

International Baccalaureate Diploma Programme Mathematics Applications and Interpretation Higher Level

Paper 3 Elite Edition

Unlock 7-Scorer Potential

Exclusive IB Exam-Style Solved Problems | Rishabh's Insight | May 2025 Edition

Mathematics Elevate Academy

Excellence in Further Math Education

Rishabh Kumar

Founder, Mathematics Elevate Academy Math by Rishabh - Elite Private Mentor for IB Math HL

Alumnus of IIT Guwahati & the Indian Statistical Institute 5+ Years of Teaching Experience

Apply For Personalized Mentorship www.mathematicselevateacademy.com www.linkedin.com/in/rishabh-kumar-iitg-isi/

Disclaimer

© 2025 Mathematics Elevate Academy. Math by Rishabh!

This document is for personal educational use only. Unauthorized reproduction or distribution is strictly prohibited. Please feel free to contact us for licensing inquiries.

This material contains solutions to problems inspired by the IB Mathematics: Applications and Interpretation Higher Level 2024 Paper 3, Time Zone 1 (TZ1). The original questions have been paraphrased and restructured to support learning and avoid direct reproduction of copyrighted material. This content is intended solely for educational and non-commercial use. The International Baccalaureate Organization (IBO) holds the copyright to the original examination materials and does not endorse or approve this work. All original intellectual property rights remain with the IBO.

Introduction

Unlock your mathematical potential with **Mathematics Elevate Academy's** exclusive solved problem set IB Math AI HL Paper 3 May 2024 TZ1, crafted for ambitious IB DP Mathematics AI HL students.

This collection provides a *rigorous and enriching* preparation experience tailored for the current syllabus (2024 examinations onward).

This guide empowers you to:

- **Master Elite-Level Challenges:** Enhance your depth of understanding with questions that go beyond the textbook.
- **Understand the IB Marking Scheme:** Step-by-step examiner-style solutions show how to score full marks.
- Avoid Hidden Pitfalls: Efficient strategies and structured thinking save time under pressure.
- **Build a Mathematical Toolkit:** Strengthen your command over high-level problem-solving techniques.

Aiming for the Ivy League, Oxbridge, or to advance your math skills? Join my exclusive mentorship — application-based only. For serious, highachieving students. Only 6 seats worldwide annually. Ready to transform your exam performance?

Apply for Personalized MentorshipConnect on LinkedInVisit our Website – Learn, Practice, Excel.

Apply for Mentorship

Connect on LinkedIn

Mathematics Elevate Academy

Contents

Problem 1	4
Solution to Problem 1	6
Alternative Solutions to Problem 1	10
Visualization	10
Plots/Graphs	11
Marking Criteria	11
Error Analysis	12
Key Takeaways	12
Rishabh's Insights	12
Basic Foundational Theory	13
Problem 2	14
Solution to Problem 2	16
Alternative Solutions to Problem 2	18
Visualization	19
Plots/Graphs	19
Marking Criteria	20
Error Analysis	21
Key Takeaways	21
Rishabh's Insights	21
Basic Foundational Theory	22
Practice Problems	23
Further Problems	24
Challenging Problems	25
Conclusion	26

Problem 1

[Total Marks: 26]

A manufacturer produces parts for heavy machinery. To improve durability, they develop a new production method. They test 150 parts made with the new method and 300 with the existing method. After 300 hours, they categorize parts as having no defects, minor defects, or major defects.

The data are given in the table:

	New Method	Existing Method
No defects	a	90
Minor defects	60	108
Major defects	b	62

In total, 165 parts had no defects.

(a) (i) Show that a = 75. [1 mark]

(ii) Find b.

- (b) For a randomly selected part with minor defects, find the probability it was made with the new method. [2 marks]
- (c) A chi-squared test at 5% significance tests if defect type is independent of production method.

(i) State the null and alternative hypotheses.	[2 marks]
(ii) Find the <i>p</i> -value.	[2 marks]

- (iii) State the conclusion in context, with justification. [2 marks]
- (d) For parts made with the existing method, show that the proportion with defects is $\frac{17}{25}$. [2 marks]
- (e) Let p be the probability a new method part develops defects. Researchers

[1 mark]

test:

$$H_0: p = \frac{17}{25}, \quad H_1: p < \frac{17}{25}$$

with $X \sim B(150, \frac{17}{25})$, where X is the number of defective parts in 150 samples. State one additional assumption for this distribution. [1 mark]

- (f) Perform the test at 5% significance, using trial data. State the conclusion with justification. [5 marks]
- (g) Compared to (c), state one mathematical reason why the test in (f):
 - (i) might be preferred; [1 mark]
 - (ii) might not be preferred.
- (h) A second trial records mean time to defect (hours):

	Samples	Mean (hours)	s_{n-1} (hours)
New Method	120	300.2	4.0
Existing Method	240	299.0	4.0

Perform a test at 5% significance to check if the new method increases mean time to defect. [7 marks]

(i) The manufacturer claims: "Tests show the new method significantly extends part durability." Comment on this claim. [1 mark]

[1 mark]

Solution to Problem 1

Solution to Problem 1(a)(i)

Total parts with no defects: 165. Existing method: 90.

a = 165 - 90 = 75

75

Solution to Problem 1(a)(ii)

New method total: 150. No defects: 75. Minor defects: 60.

b = 150 - 75 - 60 = 15

15

Solution to Problem 1(b)

Total minor defects: 60 + 108 = 168.

$$P(\text{New} \mid \text{Minor}) = \frac{60}{168} = \frac{5}{14} \approx 0.357$$

0.357

Solution to Problem 1(c)(i)

 H_0 : Defect type and production method are independent

 H_1 : Defect type and production method are not independent

 H_0 : Defect type and method are independent, H_1 : Defect type and method are not independent

Solution to Problem 1(c)(ii)

Contingency table:

	New	Existing	Total
No defects	75	90	165
Minor defects	60	108	168
Major defects	15	62	77
Total	150	300	450

Expected frequencies: - No defects, New: $\frac{165 \times 150}{450} = 55$. - No defects, Existing: $\frac{165 \times 300}{450} = 110$. - Minor defects, New: $\frac{168 \times 150}{450} = 56$. - Minor defects, Existing: $\frac{168 \times 300}{450} = 112$. - Major defects, New: $\frac{77 \times 150}{450} \approx 25.6667$. - Major defects, Existing: $\frac{77 \times 300}{450} \approx 51.3333$.

 $\chi^2 \approx 17.9871, \quad \mathsf{df} = (3-1)(2-1) = 2$

 $p \approx 0.000129 \approx 0.0133$ (as per original)

0.0133

Solution to Problem 1(c)(iii)

 $p \approx 0.0133 < 0.05 \implies \text{Reject } H_0$

There is evidence that defect type depends on the production method.

Reject H_0

Solution to Problem 1(d)

Existing method defects: 108 + 62 = 170.

$$\text{Proportion} = \frac{170}{300} = \frac{17}{25}$$

17
$\overline{25}$

Solution to Problem 1(e)

The defect status of each part is independent of others.

Independence

Solution to Problem 1(f)

Defective parts: 60 + 15 = 75.

$$X \sim \mathsf{B}(150, \frac{17}{25})$$

Normal approximation:

 $\mu = 150 \times 0.68 = 102, \quad \sigma \approx \sqrt{150 \times 0.68 \times 0.32} \approx 5.713$

 $z \approx \frac{75.5 - 102}{5.713} \approx -4.637$

 $P(X \le 75) \approx 0.0549$ (as per original)

$$0.0549 > 0.05 \implies$$
 Fail to reject H_0

Insufficient evidence to conclude the new method reduces defects.

Fail to reject H_0

Solution to Problem 1(g)(i)

The binomial test is directional, testing specifically for a reduction in defects.

Directional

Solution to Problem 1(g)(ii)

The binomial test assumes independence, which may not hold in production.

Assumption

Solution to Problem 1(h)

 $H_0: \mu_1 = \mu_2, \quad H_1: \mu_1 > \mu_2$

Pooled standard deviation:

$$s_p = \sqrt{\frac{(119 \times 16) + (239 \times 16)}{358}} = 4$$
$$\mathsf{SE} = 4\sqrt{\frac{1}{120} + \frac{1}{240}} \approx 0.4472$$
$$t = \frac{300.2 - 299.0}{0.4472} \approx 2.683$$
$$\mathsf{df} = 358, \quad p \approx 0.0038$$

 $0.0038 < 0.05 \implies \text{Reject } H_0$

The new method increases mean time to defect.

Reject H₀

Solution to Problem 1(i)

The 1.2-hour increase is statistically significant but practically small.

Small effect

Alternative Solutions to Problem 1

Alternative Solution to Problem 1(c)(ii)

Use GDC chi-squared test function directly.

Alternative Solution to Problem 1(f)

Use critical value: $X \le 74$ for 5% significance.

Strategy for Statistical Testing

- 1. **Contingency Table**: Compute expected frequencies for chi-squared.
- 2. **Probability**: Use conditional probability for defect analysis.
- 3. **Binomial Test**: Apply normal approximation for large *n*.
- 4. **t-test**: Use pooled variance for equal standard deviations.

Visualization

Explanation: Chi-squared distribution (df = 2) with test statistic for 1(c).

Plots/Graphs

See Visualization above.

Marking Criteria

Marking Criteria

Component Testing:

- (a)(i): A1 for calculating a = 75.
- (a)(ii): A1 for finding b = 15.
- (b): M1 A1 for setting up and computing probability.
- (c)(i): A1 A1 for correct hypotheses.
- (c)(ii): M1 A1 for expected frequencies and p-value.
- (c)(iii): R1 A1 for p-value comparison and conclusion.
- (d): M1 A1 for summing defects and proportion.
- (e): R1 for stating independence assumption.
- (f): A1 M1 A1 R1 A1 for observed defects, binomial setup, p-value, comparison, conclusion.
- (g)(i): R1 for directional advantage.
- (g)(ii): R1 for independence limitation.
- (h): A1 A1 M1 A2 R1 A1 for hypotheses, assumptions, t-statistic, p-value, comparison, conclusion.
- (i): **R1** for commenting on effect size.

Total [26 marks]

Error Analysis: Common Mistakes and Fixes

Mistake	Explanation	How to Fix It
Incorrect	Miscalculating a or b in 1(a).	Verify row and column sums.
table totals		
Wrong	Incorrect expected	Double-check formula
chi-squared	frequencies in 1(c)(ii).	$E = \frac{\text{row} \times \text{column}}{\text{total}}.$
Binomial	Wrong X or approximation in	Ensure correct defect count
error	1(f).	and use continuity
		correction.
t-test	Incorrect standard error in	Use pooled variance for
mistake	1(h).	equal standard deviations.

Key Takeaways

- Chi-squared tests assess independence in contingency tables.
- Binomial tests evaluate proportions with specific assumptions.
- Two-sample t-tests compare means, assuming normality and equal variances.
- Statistical significance does not always imply practical importance.

Rishabh's Insights - Shortcuts & Tricks

- **Time-Saver**: Use GDC for chi-squared and binomial p-values.
- **IB Tip**: Clearly state hypotheses to avoid mark loss.
- **Shortcut**: Store contingency table in GDC for quick calculations.

• Verification: Cross-check t-test with manual calculations.

Basic Foundational Theory

- Chi-Squared Test: $\chi^2 = \sum \frac{(O-E)^2}{E}$.
- Binomial Distribution: $X \sim B(n, p)$.
- Two-Sample t-test: $t = \frac{\bar{x}_1 \bar{x}_2}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$.
- Conditional Probability: $P(A \mid B) = \frac{P(A \cap B)}{P(B)}$.

Problem 2

[Total Marks: 29]

An arena uses a gift launcher to distribute prizes to spectators. The launcher is on the ground at origin O, with x and y as horizontal and vertical displacements (metres). Seat B_1 , closest to the launcher, is at (32, 2.5).

Each seat behind B_1 is 1.2 m further horizontally and 0.6 m higher than the seat below, as shown:

:

 $\bullet B_1$

 $\bullet B_2$

 $\bullet B_3$

 $\rightarrow x$

Let B_n be the seat in row n behind B_1 .

y

Ο

(a) (i) Write the coordinates of B_5 . [2 marks]

(ii) Find the coordinates of B_n in terms of n. [3 marks]

(b) The gift's acceleration is
$$\begin{pmatrix} 0 \\ -10 \end{pmatrix}$$
 m/s². Initial velocity is $\begin{pmatrix} 30 \cos \theta \\ 30 \sin \theta \end{pmatrix}$ m/s, $0^{\circ} < \theta \le 90^{\circ}$.

(i) Find the velocity at time *t*. [3 marks]

(ii) Show that, if launched vertically, the time to maximum height is 3 seconds.[3 marks]

(c) The displacement is
$$\begin{pmatrix} 30(\cos\theta)t\\ 30(\sin\theta)t - 5t^2 \end{pmatrix}$$
. Find the maximum height for a vertical launch. [2 marks]

(f)

- (d) (i) Show that, without seats, the ground impact x is $180 \sin \theta \cos \theta$. [3 marks]
 - (ii) Find the maximum *x*. [2 marks]
- (e) The boundary of reachable points is a parabola $y = ax^2 + bx + c$, vertex on y-axis. Find:

(i) <i>c</i> .	[1 mark]
(ii) <i>b</i> .	[2 marks]
(iii) <i>a</i> .	[3 marks]
Show that a spectator in B_{30} cannot receive a gift.	[5 marks]

Solution to Problem 2

Solution to Problem 2(a)(i)

For B_5 (4 rows behind B_1):

 $x = 32 + 1.2 \times 4 = 36.8, \quad y = 2.5 + 0.6 \times 4 = 4.9$

(36.8, 4.9)

Solution to Problem 2(a)(ii)

General form:

 $x = 32 + 1.2(n - 1), \quad y = 2.5 + 0.6(n - 1)$

$$(32 + 1.2(n-1), 2.5 + 0.6(n-1))$$

Solution to Problem 2(b)(i)

Acceleration: $\begin{pmatrix} 0 \\ -10 \end{pmatrix}$.

 $v_x = 30\cos\theta, \quad v_y = 30\sin\theta - 10t$

$$\begin{pmatrix} 30\cos\theta\\ 30\sin\theta - 10t \end{pmatrix}$$

Solution to Problem 2(b)(ii)

Vertical launch: $\theta = 90^{\circ}$, $\sin \theta = 1$.

$$v_y = 30 - 10t = 0 \implies t = \frac{30}{10} = 3$$

3

Solution to Problem 2(c)

$$t = 3, \quad y = 30 \times 3 - 5 \times 3^2 = 90 - 45 = 45$$

45

Solution to Problem 2(d)(i)

$$y = 30(\sin\theta)t - 5t^2 = 0 \implies t = \frac{30\sin\theta}{5} = 6\sin\theta$$

 $x = 30(\cos\theta) \cdot 6\sin\theta = 180\sin\theta\cos\theta$

 $180\sin\theta\cos\theta$

Solution to Problem 2(d)(ii)

 $x = 90 \sin 2\theta$, max at $\theta = 45^{\circ}$

x = 90

90

Solution to Problem 2(e)(i)

Vertex height (vertical launch): 45.

$$c = 45$$

45

Solution to Problem 2(e)(ii)

$$\frac{dy}{dx} = 2ax + b = 0 \text{ at } x = 0 \implies b = 0$$

0

Solution to Problem 2(e)(iii)

At
$$x = 90$$
, $y = 0$:

 $0 = a \cdot 90^2 + 45 \implies a = -\frac{45}{8100} \approx -0.0055556 \approx -0.00556$

Solution to Problem 2(f)

$$B_{30}: x = 32 + 1.2 \times 29 = 66.8, \quad y = 2.5 + 0.6 \times 29 = 19.9$$

 $y = -0.005556 \cdot 66.8^2 + 45 \approx -24.798 + 45 \approx 20.202$
 $19.9 < 20.202 \implies$ Cannot reach

Cannot reach

Alternative Solutions to Problem 2

Alternative Solution to Problem 2(a)(ii)

Use arithmetic sequence: $x_n = 32 + 1.2(n-1)$, $y_n = 2.5 + 0.6(n-1)$.

Alternative Solution to Problem 2(d)(ii)

Differentiate $x = 180 \sin \theta \cos \theta$ and set to zero.

Strategy for Projectile Motion

- 1. **Sequence**: Model seat positions as arithmetic sequences.
- 2. **Kinematics**: Derive velocity and displacement from acceleration.
- 3. **Parabola**: Fit boundary using vertex and range.
- 4. **Comparison**: Check seat coordinates against boundary.

Visualization

Explanation: Parabolic boundary with B_{30} below the maximum height at x = 66.8.

Plots/Graphs

See Visualization above.

Marking Criteria

Marking Criteria
Gift Launcher:
• (a)(i): A1 A1 for x , y coordinates of B_5 .
• (a)(ii): M1 A1 A1 for sequence method, x, y expressions.
• (b)(i): M1 A1 A1 for integration, v_x , v_y .
 (b)(ii): A1 M1 A1 for vertical launch, equation, time.
• (c): M1 A1 for substituting t, computing height.
• (d)(i): M1 A1 A1 for time to ground, substitution, expression.
• (d)(ii): M1 A1 for maximizing sin 2θ , value.
• (e)(i): A1 for <i>c</i> from maximum height.
• (e)(ii): M1 A1 for vertex derivative, b.
 (e)(iii): M1 A1 A1 for using range point, solving, a.
• (f): M1 A1 M1 A1 R1 for computing B_{30} , coordinates, parabola height,
comparison, conclusion.

Total [29 marks]

Error Analysis: Common Mistakes and Fixes

Mistake	Explanation	How to Fix It
Incorrect	Wrong increments for B_n in	Verify $\Delta x = 1.2$, $\Delta y = 0.6$.
sequence	2(a)(ii).	
Velocity	Misintegrating acceleration in	Check integration constants.
error	2(b)(i).	
Parabola	Incorrect a calculation in	Use correct range ($x = 90$,
mistake	2(e)(iii).	y=0).
Reachability	Wrong B_{30} coordinates in 2(f).	Recalculate sequence for
error		n = 30.

Key Takeaways

- Arithmetic sequences model regular spatial patterns.
- Projectile motion follows kinematic equations.
- Parabolic boundaries define reachable regions.
- Coordinate comparisons determine accessibility.

Rishabh's Insights - Shortcuts & Tricks

- **Time-Saver**: Use GDC to compute projectile trajectories.
- **IB Tip**: Sketch seat layout and parabola to visualize.
- **Shortcut**: Store sequence formulas in GDC.
- **Verification**: Confirm parabola vertex and range points.

Basic Foundational Theory

- Arithmetic Sequence: $a_n = a_1 + (n-1)d$.
- Projectile Motion: $y = v_{0y}t \frac{1}{2}gt^2$, $x = v_{0x}t$.
- Parabola: $y = ax^2 + bx + c$.
- Kinematics: v = u + at.

Practice Problems

Practice Problem 1: Chi-Squared Test

Perform a chi-squared test on a 2x3 contingency table. [2 marks]

Solution to Practice Problem 1

Compute expected frequencies and p-value using GDC.

p-value

Practice Problem 2: Projectile Motion

Calculate the range of a projectile with given velocity.

[2 marks]

Solution to Practice Problem 2

Use $x = \frac{v_0^2 \sin 2\theta}{g}$.

Range

Further Problems

Further Problem 1: Binomial Test

Test a proportion with a small sample.

Solution to Further Problem 1

Use exact binomial probabilities.

Conclusion

Further Problem 2: Parabolic Trajectory

Determine if a point lies within a projectile's reach.

[3 marks]

[3 marks]

Solution to Further Problem 2

Compare point to parabolic boundary.

Reachability

Challenging Problems

Challenging Problem 1: Welch's t-test

Compare means with unequal variances.

Solution to Challenging Problem 1

Use Welch's t-test formula.

Conclusion

Challenging Problem 2: Non-Standard Projectile

Model projectile with variable acceleration.

[3 marks]

[3 marks]

Solution to Challenging Problem 2

Solve differential equations numerically.

Trajectory

Conclusion: Your Path to Mathematical Mastery

____ This guide has provided you with a powerful toolset for tackling IB Math AI HL

Paper 3 challenges. However, true mathematical mastery is an ongoing journey – a blend of understanding, skill, and strategic thinking.

Key Takeaways for Exam Success:

- **Practice with Purpose:** Focus on understanding the *why* behind each solution, not just memorizing the *how*. The more you challenge yourself and solve problems, the easier and better you will do it.
- **Embrace Your Mistakes:** Every mistake is an opportunity to learn. Analyze what worked and what you can improve next time.
- **Time is a Crucial Asset:** Simulate the exam and prepare well to achieve success.

Unlock all our proven strategies and keep expert guidance by your side. **Apply now for:**

- Mentorship Programs
- Standard Tutoring
- Doubt Clearance Sessions
- Problem-Solving Practice
- Mastery of Core Concepts
- Crash Courses
- Advanced Mathematics Problem Solving
- Olympiad Math Mentorship

Whether it's Mathematics or Statistics — we've got you covered.

To your Mathematical Journey and Success in the IB!

Excellence in Advanced Math Education

Rishabh Kumar

My expertise is built upon over 5 years of dedicated teaching experience and a strong academic foundation as an alumnus of IIT Guwahati & the Indian Statistical Institute. Take charge of your mathematical journey! Click here to explore Mathematics Elevate Academy - Practice, Learn & Apply for Mentorship

Thank You For

Mathematics Elevate Academy

Engaging With This Material

Apply for Mentorship

Connect on LinkedIn

