

International Baccalaureate (IB) Diploma Programme Mathematics Analysis and Approaches Higher Level

Probability & Statistics

The IB 7-Scorer's Ultimate Guide

Crafted Exclusively for High-Achieving IB Mathematics Students: April 2025 Edition

Mathematics Elevate Academy

Excellence in Advanced Mathematics Education

Rishabh Kumar

Founder, Mathematics Elevate Academy Elite Mentor for IB Mathematics

Alumnus of Indian Institute of Technology Guwahati & Indian Statistical Institute

Visit me, Access Free Resources & Apply For Exclusive Personalized Mentorship www.mathematicselevateacademy.com www.linkedin.com/in/rishabh-kumar-iitg-isi/

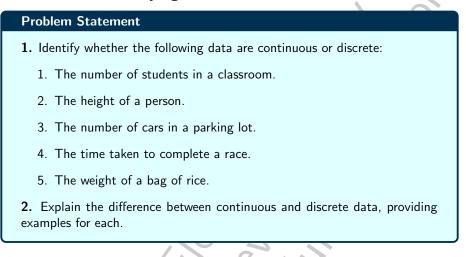
Disclaimer

This document is provided for free for personal and educational use only. Commercial use, redistribution, or modification of this document is strictly prohibited. For permissions, you can contact mathematicselevateacademy001@gmail.com.

Introduction

The IB 7-Scorer's Ultimate Guide — April 2025 Edition is thoughtfully designed for IB DP Mathematics students striving to excel in IB DP Mathematics AA SL/HL, with a special emphasis on Probability & Statistics conceptual mastery. This guide offers a wealth of expertly crafted high-level Probability & Statistics problems, conceptual challenges, and much more.

Explore examiner-style solutions, detailed marking scheme breakdowns, and insightful commentary on common errors to refine your problem-solving skills. Each problem is designed to test your grasp of Probability & Statistics concepts.


This guide goes beyond the IB syllabus, offering enrichment problems that challenge your mathematical thinking and prepare you for Olympiads and university-level mathematics. The solutions are presented with step-by-step clarity, expert insights, and advanced techniques, ensuring a comprehensive and engaging learning experience.

For answers or detailed solutions, keep following me — they will be available soon! For personalized learning, book a one-on-one mentorship session with me to receive customized guidance on mastering IB DP Mathematics AA/AI SL/HL Probability & Statistics, or even Olympiad-level problems. Together, we will build the confidence and skills you need to excel.

Check Your Understanding!

1 Probability and Statistics: Sampling

Problem 1.1: Identifying Continuous and Discrete Data

Problem 1.2: Identifying Population, Sample, and Randomness

Problem Statement

1. In the following contexts, identify the population, the sample, and whether the sample is random:

- 1. A survey of 100 students in a school to determine their favorite subject.
- 2. A study of 50 randomly selected households in a city to measure electricity usage.
- 3. A poll of 200 voters in a district to predict the outcome of an election.
- 4. A quality check of 10 items from a batch of 500 products.

2. Explain the importance of randomness in sampling and how it affects the reliability of results.

Problem 1.3: Identifying Bias and Reliability in Sampling

Problem Statement
1. Identify potential sources of bias in the following sampling methods:
1. Surveying only people in a shopping mall to determine the average income of a city.
2. Asking only students in a math class about their favorite subject.
3. Selecting only morning commuters to study public transportation us- age.
2. Evaluate the reliability of the following data sources:
1. A government census.
2. An online poll on a social media platform.
3. A scientific study published in a peer-reviewed journal.
3. Explain how missing data or errors in recording data can affect the reliability of results and suggest ways to handle such issues.

Problem 1.4: Interpretation of Outliers

Problem Statement

1. For the following data sets, determine if there are any outliers using the rule that an outlier is more than $1.5\times \rm IQR$ from the nearest quartile:

- 1. [5, 7, 8, 10, 12, 15, 18, 20, 25]
- 2. [2, 3, 3, 4, 5, 6, 7, 8, 50]

2. Suggest how to determine whether an outlier should be removed from a sample and explain the potential impact of removing or retaining outliers on the results.

(c) 2025 Mathematics Elevate Academy Rishabh Kumar (IIT G & ISI Alumnus) Page 3

Problem 1.5: Sampling Techniques and Their Effectiveness

Problem Statement
1. Identify the sampling technique used in the following scenarios:
1. Selecting every 10th person from a list of names.
2. Asking for volunteers to participate in a survey.
3. Dividing a population into age groups and randomly selecting individ- uals from each group.
 Interviewing people who are easily accessible, such as those in a shop- ping mall.
Selecting a fixed number of individuals from each category, such as gender or income level.
2. Evaluate the effectiveness of the following sampling techniques:
• Simple random sampling.
Convenience sampling.
Systematic sampling.
Quota sampling.
• Stratified sampling.
3. Calculate the number of data items in each category of a stratified sample:
• A population of 1,000 people is divided into three groups: 40% in Group A, 30% in Group B, and 30% in Group C. A stratified sample of 200 people is taken. How many people should be selected from each group?
And Contraction of the second

Key Concepts and Definitions

Key Concepts and Definitions
1. **Population and Sample**:
 The population is the entire group being studied. A sample is a subset of the population used to make inferences about the population.
2. **Continuous vs. Discrete Data**:
 Continuous data can take any value within a range (e.g., height, weight).
 Discrete data can only take specific values (e.g., number of stu- dents, number of cars).
3. **Outliers**: An outlier is a data point that is more than $1.5\times {\rm IQR}$ from the nearest quartile.
4. **Sampling Techniques**:
 Simple Random Sampling: Every individual has an equal chance of being selected.
 Convenience Sampling: Individuals are selected based on ease of access.
• ** Systematic Sampling ** : Every <i>n</i> th individual is selected.

- **Quota Sampling**: A fixed number of individuals is selected from each category.
- **Stratified Sampling**: The population is divided into groups, and a random sample is taken from each group.

Marking Guidelines

Marking Scheme
Problem 1.1: Identifying Continuous and Discrete Data
Correct identification of data type [2 marks per part]
• Valid explanation of the difference between continuous and discrete data [2 marks]
Problem 1.2: Identifying Population, Sample, and Randomness
 Correct identification of population, sample, and randomness [2 marks per part]
• Valid explanation of the importance of randomness [2 marks]
Problem 1.3: Identifying Bias and Reliability
Correct identification of bias [2 marks per part]
 Valid evaluation of data reliability [2 marks per part]
• Explanation of handling missing data or errors [2 marks]
Problem 1.4: Interpretation of Outliers
 Correct calculation of IQR and identification of outliers [2 marks per part]
 Valid explanation of the impact of outliers [2 marks]
Problem 1.5: Sampling Techniques and Effectiveness
• Correct identification of sampling techniques [2 marks per part]
• Valid evaluation of sampling techniques [2 marks per part]
Accurate calculation of stratified sample sizes [2 marks]
Additional Points
Clear presentation of solutions [1 mark]
• Logical reasoning in calculations [1 mark]

2 Probability and Statistics: Statistical Diagrams

Problem 2.1: Frequency Distributions

Problem Statement			
1. Interpret the following frequency distribution ta			
	Class Interval	Frequency	
	0-10	5	
	10 - 20	8	
	20 - 30	12	
	30 - 40	10	
	40 - 50	5	
1. What is the total		a points?	
2. What is the modal class?			

- 3. Calculate the midpoint of each class interval.
- 2. Explain how to construct a frequency distribution table from raw data.

Problem 2.2: Histograms

Problem Statement 1. Interpret the following histogram: • Identify the class interval with the highest frequency. • Estimate the total number of data points. • Explain how the height of each bar relates to the frequency. 2. Construct a histogram for the following data: Class Interval Frequency 0 - 54 5 - 106 10 - 1510 15 - 208 20 - 25 $\mathbf{2}$

3. Explain the difference between a histogram and a bar chart.

Problem 2.3: Cumulative Frequency Graphs

Problem	Problem Statement						
1. Interp	1. Interpret the following cumulative frequency graph:						
• Fir	nd the m	edian.					
• Fir	nd the lo	wer quartile, upp	per quartile, and interqua	rtile range.			
• Es	timate th	ne 90th percentil	e.				
2. Const	2. Construct a cumulative frequency graph for the following data:						
		Class Interval	Cumulative Frequency				
		0 - 10	5				
10 - 20 13							
20 - 30 25							
30 - 40 35							
40-50 40							

3. Explain how to use a cumulative frequency graph to find the range, interquartile range, and percentiles.

Problem 2.4: Box and Whisker Plots

Problem Statement

1. Produce a box and whisker plot for the following data:

Data: 5,7,8,10,12,15,18,20,25

- Find the minimum, lower quartile, median, upper quartile, and maximum.
- Draw the box and whisker plot.

2. Interpret the following box and whisker plot:

- Identify the range and interquartile range.
- Determine if the data is symmetric or skewed.
- Suggest whether the data could follow a normal distribution.

3. Explain how box and whisker plots can be used to compare distributions.

⁽c) 2025 Mathematics Elevate Academy Rishabh Kumar (IIT G & ISI Alumnus) Page 8

Key Concepts and Definitions

Marking Guidelines

Marking Scheme Problem 2.1: Frequency Distributions • Correct interpretation of the frequency table [2 marks per part] • Valid explanation of how to construct a frequency table [2 marks] **Problem 2.2: Histograms** • Correct interpretation of the histogram [2 marks per part] • Accurate construction of the histogram [2 marks per part] • Valid explanation of the difference between histograms and bar charts [2 marks] **Problem 2.3: Cumulative Frequency Graphs** • Correct interpretation of the graph [2 marks per part] • Accurate construction of the cumulative frequency graph [2 marks per part] • Valid explanation of how to use the graph to find key statistics [2 marks] **Problem 2.4: Box and Whisker Plots** • Correct calculation of the five-number summary [2 marks per part] • Accurate construction of the box and whisker plot [2 marks per part] • Valid interpretation of the plot [2 marks per part] **Additional Points** • Clear presentation of solutions [1 mark]

• Logical reasoning in calculations [1 mark]

3 Probability and Statistics: Summary Statistics

Problem 3.1: Measures of Central Tendency

Problem Statement				
${f 1.}$ Calculate the mean, median, and mode for the following data set:				
Da	ta: 5,7,8,1	0, 12, 15, 18, 20,	25	
2. For the following frequency distribution table, calculate the mean:				
	Value (x)	Frequency (f)		
	1	4		
	2	6		
	$\frac{2}{3}$	8		
		8 5		
	$\frac{4}{5}$	2		
Use the formula:	$\bar{x} = \frac{2}{2}$	$\frac{\sum_{i=1}^{k} f_i x_i}{\sum_{i=1}^{k} f_i}$, 	

3. Explain the difference between the mean, median, and mode, and provide examples of when each measure is most appropriate.

Problem 3.2: Estimation of Mean from Grouped Data

Problem Statement					
1. Estimate the mean values:	n for the follow	ving grouped da	ta using mid-interval		
	Class Interval	Frequency (f)			
	0 - 10	5			
	10 - 20	8			
	20 - 30	12			
	30 - 40	10			
	40 - 50	5			
2. Explain why mid grouped data and disc			timate the mean for od.		

Problem 3.3: Modal Class for Grouped Data

Problem Statement					
1. Identify the modal	1. Identify the modal class for the following grouped data:				
	Class Interval	Frequency (f)			
	0 - 10	5			
	10 - 20	8			
	20 - 30	12			
	30 - 40	10			
	40 - 50	5			
2. Explain how the histogram and discuss			a frequency table or data.		

Problem 3.4: Measures of Dispersion

Problem Statement

1. Use technology to calculate the interquartile range (IQR), standard deviation, and variance for the following data set:

Data: 5, 7, 8, 10, 12, 15, 18, 20, 25

2. Explain the significance of the IQR, standard deviation, and variance in describing the spread of data.

3. Discuss how outliers can affect the standard deviation and variance.

Problem 3.5: Effect of Constant Changes on Data

Problem Statement

1. A data set has a mean of 10 and a standard deviation of 2. Calculate the new mean and standard deviation if:

- 1. Each data point is increased by 5.
- 2. Each data point is multiplied by 3.

2. Explain how adding or multiplying a constant affects the mean and standard deviation of a data set.

Problem 3.6: Quartiles of Discrete Data

Problem Statement

1. Use technology to find the quartiles for the following data set:

Data: 5,7,8,10,12,15,18,20,25

2. Explain the significance of quartiles in summarizing data and how they are used to calculate the interquartile range (IQR).

Key Concepts and Definitions

Key Concepts and Definitions

- 1. **Measures of Central Tendency**:
 - **Mean**: The average of the data, calculated as:

$$\bar{x} = \frac{\sum_{i=1}^{k} f_i x_i}{\sum_{i=1}^{k} f_i}$$

• **Median**: The middle value when the data is ordered.

- **Mode**: The most frequently occurring value in the data.
- 2. ******Grouped Data******:
 - Use mid-interval values to estimate the mean.
 - The modal class is the class interval with the highest frequency.
- 3. ******Measures of Dispersion******:
 - **Interquartile Range (IQR)**: The difference between the upper quartile (Q3) and lower quartile (Q1).
 - **Standard Deviation**: A measure of the spread of data around the mean.
 - **Variance**: The square of the standard deviation.
- 4. **Effect of Constant Changes**:
 - Adding a constant to all data points increases the mean by the same constant but does not affect the standard deviation.
 - Multiplying all data points by a constant multiplies the mean and standard deviation by the same constant.

⁽c) 2025 Mathematics Elevate Academy Rishabh Kumar (IIT G & ISI Alumnus) Page 12

Marking Guidelines


Marking Scheme Problem 3.1: Measures of Central Tendency • Correct calculation of mean, median, and mode [2 marks per part] • Valid explanation of the differences between the measures [2 marks] Problem 3.2: Estimation of Mean from Grouped Data • Correct use of mid-interval values [2 marks per part] • Valid explanation of the method and its limitations [2 marks] Problem 3.3: Modal Class for Grouped Data • Correct identification of the modal class [2 marks per part] • Valid explanation of its significance [2 marks] **Problem 3.4: Measures of Dispersion** • Correct calculation of IQR, standard deviation, and variance [2 marks per part] • Valid explanation of their significance [2 marks] Problem 3.5: Effect of Constant Changes on Data • Correct calculation of new mean and standard deviation [2 marks per part] • Valid explanation of the effects of constant changes [2 marks] Problem 3.6: Quartiles of Discrete Data • Correct calculation of quartiles [2 marks per part] • Valid explanation of their significance [2 marks]

Additional Points

- Clear presentation of solutions [1 mark]
- Logical reasoning in calculations [1 mark]

4 Probability and Statistics: Correlation and Regression

Problem 4.1: Pearson's Product Moment Correlation Coefficient

Problem 4.2: Scatter Diagrams and Line of Best Fit

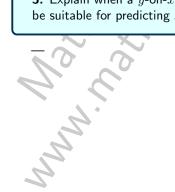
Problem Statement				
1. Plot a scatter diagram for the following data:				
x	y			
1	3			
2	5			
3	7			
4	9			
5	11			
0				
2. Estimate the line of best fit by eye, ensuring that it passes through the mean point (\bar{x}, \bar{y}) .				
3. Explain how a scatter diagram can be used to visually assess the strength				
and direction of a linear relationship.				

(c) 2025 Mathematics Elevate Academy Rishabh Kumar (IIT G & ISI Alumnus) Page 14

Problem Statement				
1. Use technology to calculate the equation of the regression line of y on x for the following data:				
x	y			
1	2			
2	4			
3	6			
4	8			
5	10			
b is the slope.	= a + bx, where a is the intercept and meters a and b in the context of the			

Problem 4.4: Using the Regression Line for Prediction

Problem Statement


1. For the regression line y = 2 + 3x, predict the value of y when:

1. x = 4

2. x = 10

2. Discuss the dangers of extrapolation when using the regression line for prediction.

3. Explain when a y-on-x regression line is appropriate and why it may not be suitable for predicting x from y.

Problem 4.5: Piecewise Linear Models

Problem Statement
1. Create a piecewise linear model for the following data:
$\begin{array}{ c c c c c c c }\hline x & y \\ \hline 1 & 2 \\ 2 & 4 \\ 3 & 6 \\ 4 & 3 \\ 5 & 10 \\ 6 & 15 \\ 7 & 20 \\ 8 & 25 \\ \hline \end{array}$
 Divide the data into two sections: 1 ≤ x ≤ 5 and 6 ≤ x ≤ 8. Find the equation of the regression line for each section. 2. Explain how piecewise linear models can be used to model non-linear relationships. 3. Discuss the limitations of piecewise linear models.
- C.

Key Concepts and Definitions

Key	Concepts	and	Definitions	

- 1. **Pearson's Product Moment Correlation Coefficient $(r)^{**}$:
 - Measures the strength and direction of the linear relationship between two variables.
 - r ranges from -1 to 1:
 - r = 1: Perfect positive linear correlation.
 - r = -1: Perfect negative linear correlation.
 - r = 0: No linear correlation.
- 2. ******Scatter Diagram******: A graphical representation of bivariate data, where each point represents a pair of values (x, y). It is used to visually assess the relationship between the variables.
- 3. **Regression Line of y on x^{**} : The line of best fit that minimizes the sum of squared vertical distances between the data points and the line. The equation is:

$$y = a + bx$$

where:

Mr. C.

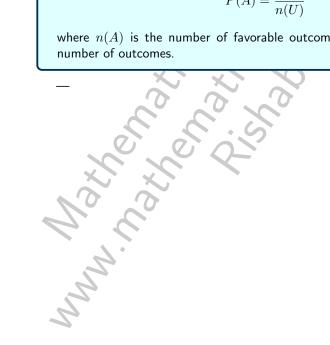
- a is the intercept (value of y when x = 0).
- *b* is the slope (rate of change of *y* with respect to *x*).
- 4. ******Extrapolation******: Using the regression line to predict values outside the range of the data. This can be unreliable as the relationship may not hold outside the observed range.
- 5. **Piecewise Linear Models**: A model that uses different linear equations for different sections of the data. It is useful for modeling nonlinear relationships in a piecewise manner.

Marking Guidelines

Marking Scheme
Problem 4.1: Pearson's Product Moment Correlation Coefficient
• Correct calculation of r using technology [2 marks per part]
• Valid interpretation of r in context [2 marks per part]
• Explanation of the range and meaning of r [2 marks]
Problem 4.2: Scatter Diagrams and Line of Best Fit
• Accurate plotting of the scatter diagram [2 marks per part]
• Correct estimation of the line of best fit [2 marks per part]
• Valid explanation of the visual assessment of correlation [2 marks]
Problem 4.3: Equation of the Regression Line of y on x
• Correct calculation of the regression line equation [2 marks per part]
• Valid interpretation of the parameters a and b [2 marks per part]
Problem 4.4: Using the Regression Line for Prediction
• Correct prediction using the regression line [2 marks per part]
• Valid discussion of the dangers of extrapolation [2 marks]
• Explanation of when a <i>y</i> -on- <i>x</i> regression line is appropriate [2 marks]
Problem 4.5: Piecewise Linear Models
• Correct creation of piecewise linear models [2 marks per part]
• Valid explanation of their use and limitations [2 marks per part]
Additional Points
Clear presentation of solutions [1 mark]
• Logical reasoning in calculations [1 mark]
n n n n n n n n n n n n n n n n n n n

5 Probability: Definitions and Basic Concepts

Problem 5.1: Concepts of Trial, Outcome, and Sample Space


Problem Statement		
1. Define the following terms and provide an example for each:		
1. Trial		
2. Outcome		
3. Sample space		
4. Event		
5. Equally likely outcomes		
6. Relative frequency		
2. A die is rolled. List the sample space and identify the following events:		
1. Event A : Rolling an even number.		
2. Event B : Rolling a number greater than 4.		
3. Event C : Rolling a 3.		
3. Explain how relative frequency can be used to estimate the probability of an event.		

Problem 5.2: Theoretical Probability

Problem Statement
1. A bag contains 3 red balls, 2 blue balls, and 5 green balls. Find the probability of:
1. Drawing a red ball.
2. Drawing a blue ball.
3. Drawing a ball that is not green.
2. A coin is flipped twice. List all possible outcomes and find the probability of:
1. Getting exactly one head.
2. Getting at least one tail.
3. Getting no heads.
3. Explain the formula for theoretical probability:
$P(A) = \frac{n(A)}{n(U)}$
where $n(A)$ is the number of favorable outcomes and $n(U)$ is the total

where n(A) is the number of favorable outcomes and n(U) is the total

Problem 5.3: Complementary Events

Problem Statement
1. A card is drawn from a standard deck of 52 cards. Find the probability of:
1. Drawing a heart.
2. Not drawing a heart.
2. A die is rolled. Find the probability of:
1. Rolling a number less than 4.
2. Rolling a number that is not less than 4.
3. Explain the relationship between complementary events A and A' and the formula:
P(A) + P(A') = 1

Problem 5.4: Expected Number of Occurrences

Problem Statement

- 1. A coin is flipped 100 times. Calculate the expected number of:
 - 1. Heads.
 - 2. Tails.
- 2. A die is rolled 60 times. Calculate the expected number of times:
 - 1. A 6 is rolled.
 - 2. An even number is rolled.
- 3. Explain the formula for the expected number of occurrences:

Expected number = Number of trials \times Probability of the event.

Key Concepts and Definitions

Key Concepts and Definitions

- 1. ******Trial******: A single performance of an experiment (e.g., rolling a die).
- 2. **Outcome**: A possible result of a trial (e.g., rolling a 4).
- 3. **Sample Space**: The set of all possible outcomes of a trial (e.g., $\{1, 2, 3, 4, 5, 6\}$ for a die roll).
- **Event**: A subset of the sample space (e.g., rolling an even number).
- 5. **Equally Likely Outcomes**: Outcomes that have the same probability of occurring (e.g., flipping a fair coin).
- 6. ******Relative Frequency******: The ratio of the number of times an event occurs to the total number of trials.
- 7. **Theoretical Probability**:

N. N.

$$P(A) = \frac{n(A)}{n(U)}$$

where n(A) is the number of favorable outcomes and n(U) is the total number of outcomes.

8. **Complementary Events**: Events A and A' are complementary if A' represents all outcomes not in A. The relationship is:

$$P(A) + P(A') = 1$$

9. **Expected Number of Occurrences**: The expected number of times an event occurs is given by:

Expected number = Number of trials \times Probability of the event.

(c) 2025 Mathematics Elevate Academy Rishabh Kumar (IIT G & ISI Alumnus) Page 22

Marking Guidelines

V MM

Marking Scheme		
Problem 5.1: Concepts of Trial, Outcome, and Sample Space		
Correct definitions and examples [2 marks per part]		
 Accurate listing of sample space and identification of events [2 marks per part] 		
 Valid explanation of relative frequency [2 marks] 		
Problem 5.2: Theoretical Probability		
• Correct calculation of probabilities [2 marks per part]		
 Accurate listing of all possibilities [2 marks per part] 		
• Valid explanation of the formula for theoretical probability [2 marks]		
Problem 5.3: Complementary Events		
 Correct calculation of probabilities for complementary events [2 marks per part] 		
\bullet Valid explanation of the relationship between $P(A)$ and $P(A^\prime)$ [2 marks]		
Problem 5.4: Expected Number of Occurrences		
• Correct calculation of expected numbers [2 marks per part]		
• Valid explanation of the formula for expected occurrences [2 marks]		
Additional Points		
Clear presentation of solutions [1 mark]		
 Logical reasoning in calculations [1 mark] 		

6 Probability: Techniques and Concepts

Problem 6.1: Venn Diagrams

Problem S	tatement			
1. Use the following Venn diagram to calculate probabilities:				
	Region	Description	Number of Elements	
	$A \cap B$	AandB	5	
	$A \setminus B$	Aonly	8	
	$B \setminus A$	Bonly	7	
	$A^c \cap B^c$	Neither Anor B	10	
 P(A) P(B) 				
3. $P(A \cup B)$				
4. $P(A \cap B)$				
2. Explain how Venn diagrams can be used to organize information and calculate probabilities.				

Problem 6.2: Tree Diagrams

Problem Statement

1. A bag contains 3 red balls and 2 blue balls. A ball is drawn, its color is noted, and it is replaced. Draw a tree diagram to represent the situation and calculate the probability of:

- 1. Drawing two red balls.
- 2. Drawing one red ball and one blue ball (in any order).
- 3. Drawing at least one blue ball.
- 2. Explain the rules for using tree diagrams:
 - Multiply along the branches.
 - Add between the branches.
- (c) 2025 Mathematics Elevate Academy Rishabh Kumar (IIT G & ISI Alumnus) Page 24

Problem 6.3: Sample Space Diagrams

Problem Statem	ent
	and a coin is flipped. Use a sample space diagram to list nes and calculate the probability of:
1. Rolling a 4 a	and flipping heads.
2. Rolling an e	ven number.
3. Flipping tail	S.
2. Explain how sa and calculate prob	mple space diagrams can be used to organize information pabilities.
Problem 6.4: Ta	bles of Outcomes
Problem Statem	ent
1. Two dice are roof:	olled. Use a table of outcomes to calculate the probability
1. Rolling a su	m of 7.
2. Rolling doub	oles (e.g., 1 and 1, 2 and 2, etc.).
3. Rolling a su	m greater than 9.
2. Explain how tal calculate probabili	bles of outcomes can be used to organize information and ties.
- Horny	

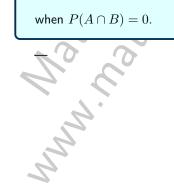
Problem 6.5: Combined Events

Problem Statement	
1. Given $P(A) = 0.4$, $P(B) = 0.5$, and $P(A \cap B) = 0.2$, calculate:	
1. $P(A \cup B)$	
2. $P(A^c)$	
3. $P(B^c)$	
2. Explain the formula for combined events:	
$P(A \cup B) = P(A) + P(B) - P(A \cap B)$	
and its significance in probability calculations.	
	Ĩ

Problem 6.6: Mutually Exclusive Events

Problem Statement

1. Two events, A and B, are mutually exclusive. If P(A) = 0.3 and P(B) = 0.4, calculate:


1. $P(A \cap B)$

2. $P(A \cup B)$

2. Explain the concept of mutually exclusive events and the formula:

$$P(A \cup B) = P(A) + P(B)$$

when $P(A \cap B) = 0$.

Problem 6.7: Conditional Probability

Problem Statement
1. A card is drawn from a standard deck of 52 cards. Find the probability that the card is a heart given that it is red.

2. A bag contains 4 red balls and 6 blue balls. Two balls are drawn without replacement. Find the probability that:

- 1. The second ball is red given that the first ball is red.
- 2. The second ball is blue given that the first ball is red.
- **3.** Explain the formula for conditional probability:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

and how it can be applied using Venn diagrams, tree diagrams, or tables of outcomes.

Problem 6.8: Independent Events

Problem Statement

1. Two events, A and B, are independent. If P(A)=0.5 and P(B)=0.6, calculate:

1. $P(A \cap B)$

2. $P(A \cup B)$

2. Explain the concept of independent events and the formula:

 $P(A \cap B) = P(A)P(B)$

and how it differs from mutually exclusive events.

Key Concepts and Definitions

Key Concepts and Definitions

- 1. **Venn Diagrams**: A visual representation of events and their relationships, used to calculate probabilities.
- **Tree Diagrams**: A branching diagram that represents all possible outcomes of a sequence of events. Multiply along branches and add between branches.
- 3. **Sample Space Diagrams**: A grid or list showing all possible outcomes of an experiment.
- 4. **Tables of Outcomes**: A tabular representation of all possible outcomes, often used for two-stage experiments.
- 5. **Combined Events**:

King ann

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

- 6. **Mutually Exclusive Events**: Events that cannot occur simultaneously, so $P(A \cap B) = 0$.
- 7. ******Conditional Probability******: The probability of A given B:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

8. **Independent Events**: Events that do not affect each other, so:

$$P(A \cap B) = P(A)P(B)$$

Marking Guidelines

Marking Scheme
Problem 6.1: Venn Diagrams
• Correct calculation of probabilities [2 marks per part]
• Valid explanation of how Venn diagrams are used [2 marks]
Problem 6.2: Tree Diagrams
• Accurate construction of the tree diagram [2 marks]
• Correct calculation of probabilities [2 marks per part]
• Valid explanation of the rules for tree diagrams [2 marks]
Problem 6.3: Sample Space Diagrams
Correct listing of all outcomes [2 marks]
• Accurate calculation of probabilities [2 marks per part]
• Valid explanation of how sample space diagrams are used [2 marks]
Problem 6.4: Tables of Outcomes
Correct construction of the table [2 marks]
• Accurate calculation of probabilities [2 marks per part]
• Valid explanation of how tables of outcomes are used [2 marks]
Problem 6.5: Combined Events
• Correct calculation of probabilities using the formula [2 marks per part]
• Valid explanation of the formula for combined events [2 marks]
Problem 6.6: Mutually Exclusive Events
• Correct calculation of probabilities [2 marks per part]
• Valid explanation of mutually exclusive events [2 marks]
Problem 6.7: Conditional Probability
• Correct calculation of conditional probabilities [2 marks per part]
• Valid explanation of the formula for conditional probability [2 marks]
Problem 6.8: Independent Events
• Correct calculation of probabilities [2 marks per part]
 Valid explanation of independent events [2 marks] 2025 Mathematics Elevate Academy Rishabh Kumar (IIT G & ISI Alumnus) Page 29 Additional Points
• Clear presentation of solutions [1 mark]
Logical reasoning in calculations [1 mark]

7 Probability: Discrete Random Variables

Problem 7.1: Probability Distributions

Problem Statement
 A fair six-sided die is rolled. Create the probability distribution for the random variable X, where X represents the number rolled. A bag contains 3 red balls, 2 blue balls, and 1 green ball. A ball is drawn at random, and the random variable X represents the number of red balls drawn. Create the probability distribution for X. Explain the concept of a discrete random variable and how its probability distribution is created from context.
_

Problem 7.2: Total Probability in a Distribution

Problem Statement
1. Verify that the following is a valid probability distribution:
$\begin{array}{ c c c } \hline X & P(X) \\ \hline 1 & 0.2 \\ 2 & 0.3 \\ 3 & 0.4 \\ 4 & 0.1 \\ \hline \end{array}$
2. A random variable X has the following probabilities:
P(X = 1) = 0.25, P(X = 2) = 0.35, P(X = 3) = 0.15.

Find P(X = 4) if the total probability must equal 1. **3.** Explain why the total probability in a probability distribution must equal 1.

© 2025 Mathematics Elevate Academy Rishabh Kumar (IIT G & ISI Alumnus) Page 30

Problem 7.3: Expected Value (Mean) of Discrete Data

Problem Statement 1. Calculate the expected value E(X) for the following probability distribution: P(X)X 0.2 1 20.33 0.440.12. A game involves rolling a fair six-sided die. The random variable Xrepresents the winnings, where: $X = \begin{cases} 5 & \text{if a 6 is rolled,} \\ 0 & \text{otherwise.} \end{cases}$ Find the expected value E(X). 3. Explain the formula for the expected value: $j = \sum_{i=1}^{n} x_{i}$ $E(X) = \sum x P(X = x)$

Problem 7.4: Applications of Probability Distributions

Problem Statement	
1. A factory produces light bulbs, and the probability distribution for the number of defective bulbs in a batch of 5 is given by:	
X	P(X)
0	0.5
1	0.3
2	0.15
3	0.05
1. Find the expected number of defective bulbs in a batch.	
2. What is the probability of having at least 2 defective bulbs in a batch?	
 A game involves flipping a fair coin three times. The random variable X represents the number of heads obtained. Create the probability distribution for X and calculate E(X). Explain how probability distributions can be used to answer questions in context. 	

Problem 7.5: Fair Games and Expected Value

Problem Statement

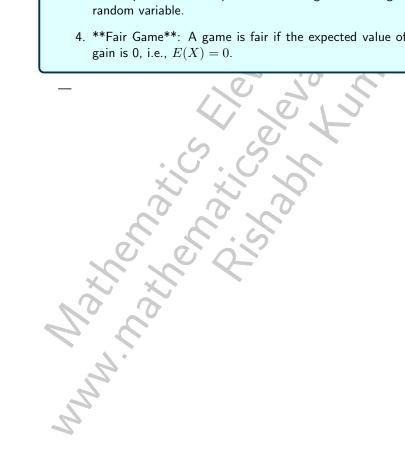
m

1. A game involves rolling a fair six-sided die. The player wins 10ifa6isrolledandloses2 otherwise. Let X represent the gain of the player. Find E(X) and determine if the game is fair.

2. A spinner has 4 equal sections labeled 1, 2, 3, and 4. A player wins 5ifthe spinner lands on 4 and loses 1 otherwise. Let X represent the gain of the player. Find E(X) and determine if the game is fair.

3. Explain the concept of a fair game and how E(X) = 0 indicates fairness.

Key Concepts and Definitions


Key Concepts and Definitions

- 1. **Discrete Random Variable**: A variable that takes on a finite or countable number of values, each with an associated probability.
- 2. **Probability Distribution**: A table or function that assigns probabilities to each possible value of a discrete random variable. The total probability must equal 1.
- 3. **Expected Value (Mean)**:

$$E(X) = \sum x P(X = x)$$

The expected value represents the long-term average value of the random variable.

4. **Fair Game**: A game is fair if the expected value of the player's

Marking Guidelines

Marking Scheme Problem 7.1: Probability Distributions • Correct creation of probability distributions [2 marks per part] • Valid explanation of discrete random variables [2 marks] Problem 7.2: Total Probability in a Distribution • Correct verification of total probability [2 marks per part] • Accurate calculation of missing probabilities [2 marks per part] • Valid explanation of why total probability equals 1 [2 marks] Problem 7.3: Expected Value (Mean) of Discrete Data • Correct calculation of E(X) [2 marks per part] • Valid explanation of the formula for expected value [2 marks] **Problem 7.4: Applications of Probability Distributions** • Correct calculation of probabilities and expected values [2 marks per part] • Valid explanation of how distributions are used in context [2 marks] Problem 7.5: Fair Games and Expected Value • Correct calculation of E(X) [2 marks per part] • Valid determination of whether the game is fair [2 marks per part] • Explanation of the concept of a fair game [2 marks] **Additional Points**

- Clear presentation of solutions [1 mark]
- Logical reasoning in calculations [1 mark]

8 Probability: Binomial Distribution

Problem 8.1: Recognizing a Binomial Distribution

Problem 8.2: Calculating Binomial Probabilities

Problem Statement 1. Use technology to calculate the following binomial probabilities: 1. P(X = 3) where $X \sim Bin(n = 5, p = 0.6)$. 2. $P(X \le 2)$ where $X \sim Bin(n = 8, p = 0.4)$. 3. $P(X \ge 4)$ where $X \sim Bin(n = 10, p = 0.7)$. 2. A basketball player has a 75% chance of making a free throw. If the player takes 6 free throws, calculate the probability of: 1. Making exactly 4 free throws. 2. Making at least 5 free throws. 3. Making no more than 2 free throws.

3. Explain how technology (e.g., a calculator or software) can be used to calculate binomial probabilities efficiently.

Problem 8.3: Mean and Variance of the Binomial Distribution

Problem Statement

1. For each of the following binomial distributions, calculate the mean E(X) and variance Var(X):

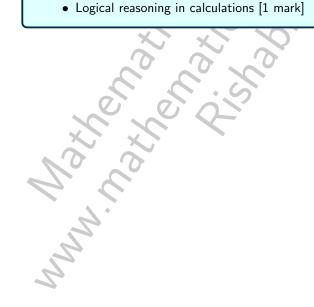
- 1. $X \sim Bin(n = 10, p = 0.5)$
- 2. $X \sim Bin(n = 20, p = 0.3)$
- 3. $X \sim Bin(n = 15, p = 0.8)$

2. A factory produces light bulbs, and 5% of the bulbs are defective. If a random sample of 50 bulbs is taken, calculate:

- 1. The expected number of defective bulbs.
- 2. The variance in the number of defective bulbs.

3. Explain the formulas for the mean and variance of a binomial distribution:

E(X) = np, Var(X) = np(1-p)


and their significance in understanding the distribution.

⁽c) 2025 Mathematics Elevate Academy Rishabh Kumar (IIT G & ISI Alumnus) Page 36

Key Concepts and Definitions 1. **Binomial Distribution**: A discrete probability distribution that models the number of successes in n independent trials, each with a probability p of success. The conditions for a binomial distribution are: • Fixed number of trials (n). • Two possible outcomes (success and failure). • Fixed probability of success (*p*). • Independent trials. 2. **Binomial Probability Formula**: The probability of exactly k successes in n trials is given by: $P(X=k) = \binom{n}{k} p^k (1-p)^{n-k}$ where $\binom{n}{k} = \frac{n!}{k!(n-k)!}$. 3. **Mean and Variance**: For a binomial random variable X \sim Bin(n,p): E(X) = np, Var(X) = np(1-p)The mean represents the expected number of successes, and the variance measures the spread of the distribution. Stoll why

Marking Scheme
Problem 8.1: Recognizing a Binomial Distribution
 Correct identification of whether the situation is binomial [2 marks per part]
• Valid explanation of the conditions for a binomial distribution [2 marks]
Problem 8.2: Calculating Binomial Probabilities
 Correct calculation of binomial probabilities using technology [2 marks per part]
 Valid explanation of how technology is used [2 marks]
Problem 8.3: Mean and Variance of the Binomial Distribution
• Correct calculation of mean and variance [2 marks per part]
• Valid explanation of the formulas for mean and variance [2 marks]
Additional Points
Clear presentation of solutions [1 mark]

• Logical reasoning in calculations [1 mark]

9 Probability: Normal Distribution

Problem 9.1: Properties of the Normal Distribution

Problem Statement
1. Explain the key properties of the normal distribution:
• Symmetry about the mean.
• The total area under the curve equals 1.
• Approximately 68% of the data lies within one standard deviation of the mean, 95% within two standard deviations, and 99.7% within three standard deviations.
2. A dataset is approximately normally distributed with a mean of 50 and a standard deviation of 5. Use the 68-95-99.7 rule to estimate the percentage of data that lies:
1. Between 45 and 55.
2. Between 40 and 60.
3. Outside the range 35 to 65.
3. Discuss why many natural phenomena (e.g., heights, test scores) are well modeled by a normal distribution.

Problem 9.2: Diagrammatic Representation of the Normal Distribution

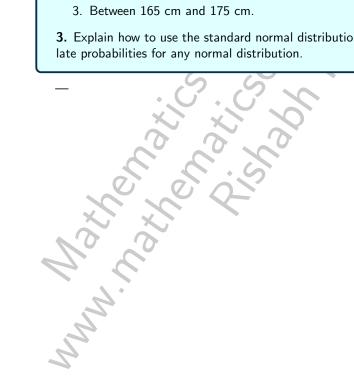
Problem Statement

1. Sketch a normal distribution curve for a dataset with a mean of 100 and a standard deviation of 15. Label the mean and the points at one, two, and three standard deviations from the mean.

2. Explain how the area under the curve represents probability and why the curve is symmetric about the mean.

3. For a normal distribution with mean $\mu=70$ and standard deviation $\sigma=10,$ shade the region representing the probability of the random variable being between 60 and 80.

(c) 2025 Mathematics Elevate Academy Rishabh Kumar (IIT G & ISI Alumnus) Page 39


Problem 9.3: Normal Probability Calculations

Problem Statement 1. A random variable X follows a normal distribution with mean $\mu = 50$ and standard deviation $\sigma = 10$. Use technology to calculate the probability that: 1. X < 402. X > 60**3**. 40 < X < 60

2. The heights of a group of students are normally distributed with a mean of 170 cm and a standard deviation of 8 cm. Find the probability that a randomly selected student has a height:

- 1. Less than 160 cm.
- 2. Greater than 180 cm.
- 3. Between 165 cm and 175 cm.

3. Explain how to use the standard normal distribution (Z-scores) to calcu-

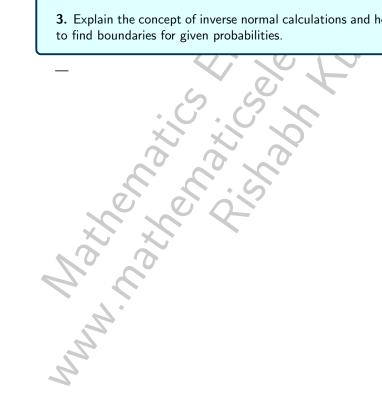
Problem 9.4: Inverse Normal Calculations

Problem Statement

1. A random variable X follows a normal distribution with mean $\mu = 100$ and standard deviation $\sigma = 15$. Use technology to find:

- 1. The value of X such that P(X < x) = 0.25.
- 2. The value of X such that P(X > x) = 0.10.

3. The values of X that enclose the middle 90% of the distribution.


2. The weights of apples in a farm are normally distributed with a mean of 150 g and a standard deviation of 20 g. Find:

1. The weight below which 5% of the apples fall.

2. The weight above which 10% of the apples fall.

3. The range of weights that contains the middle 80% of the apples.

3. Explain the concept of inverse normal calculations and how they are used

Key Concepts and Definitions

- 1. **Normal Distribution**: A continuous probability distribution that is symmetric about the mean and follows a bell-shaped curve. It is defined by two parameters:
 - Mean (μ): The center of the distribution.
 - Standard deviation (σ): The spread of the distribution.
- 2. **68-95-99.7 Rule**: For a normal distribution:
 - 68% of the data lies within one standard deviation of the mean.
 - 95% of the data lies within two standard deviations of the mean.
 - \bullet 99.7% of the data lies within three standard deviations of the mean.
- 3. **Standard Normal Distribution**: A normal distribution with mean $\mu = 0$ and standard deviation $\sigma = 1$. Z-scores are used to standardize any normal distribution:

$$Z = \frac{X - \mu}{\sigma}$$

4. **Inverse Normal Calculations**: The process of finding the value of X for a given probability. This is the reverse of normal probability calculations.

Marking Scheme
Problem 9.1: Properties of the Normal Distribution
 Correct explanation of the properties of the normal distribution [2 marks]
• Accurate use of the 68-95-99.7 rule [2 marks per part]
 Valid discussion of why natural phenomena follow a normal distribution [2 marks]
Problem 9.2: Diagrammatic Representation of the Normal Distribu- tion
• Accurate sketch of the normal distribution curve [2 marks]
 Correct labeling of mean and standard deviations [2 marks]
 Valid explanation of the area under the curve representing probability [2 marks]
Problem 9.3: Normal Probability Calculations
Correct calculation of probabilities using technology [2 marks per part]
• Valid explanation of how Z-scores are used [2 marks]
Problem 9.4: Inverse Normal Calculations
 Correct calculation of boundaries for given probabilities [2 marks per part]
• Valid explanation of inverse normal calculations [2 marks]

Additional Points

M

- Clear presentation of solutions [1 mark]
- Logical reasoning in calculations [1 mark]

10 Statistics: X-on-Y Regression

Problem 10.1: Equation of the Regression Line of x on y

Problem Statement 1. Use your GDC (Graphical Display Calculator) to find the regression line of x on y for the following data set: yx1 $\mathbf{2}$ 24 3 6 8 4 510 Write the equation of the regression line in the form: x = a + by**2.** For the following data set, calculate the regression line of x on y using your GDC: xy1510 202530 3540 4550 553. Explain the difference between the regression line of x on y and the regression line of y on x. North Man

Problem 10.2: Using the Regression Line for Prediction

Problem Statement
1. For the regression line $x = 2 + 3y$, predict the value of x when:
1. $y = 5$
2. $y = 10$
2. For the regression line $x = -1 + 0.5y$, predict the value of x when:
1. $y = 8$
2. $y = 20$
3. Discuss the dangers of extrapolation when using the regression line of x on y for prediction purposes.
4. Explain when it is appropriate to use the regression line of x on y instead of the regression line of y on x .

Key Concepts and Definitions

Key Concepts and Definitions

- 1. **Regression Line of x on y**: The regression line of x on y is used to predict the value of x for a given value of y. It minimizes the sum of squared horizontal deviations between the data points and the line.
- 2. ******Equation of the Regression Line******: The regression line of x on y is written in the form:

x = a + by

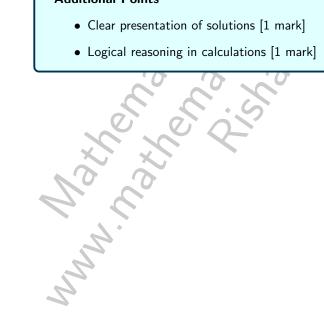
where:

- a is the intercept (the value of x when y = 0).
- b is the slope (the rate of change of x with respect to y).
- 3. **Prediction Using the Regression Line**: The regression line can be used to predict the value of x for a given value of y. However, predictions should be made cautiously, especially when extrapolating beyond the range of the data.
- 4. **Extrapolation**: Using the regression line to predict values outside the range of the observed data. This can lead to unreliable predictions as the relationship may not hold outside the observed range.

⁽c) 2025 Mathematics Elevate Academy Rishabh Kumar (IIT G & ISI Alumnus) Page 45

Marking Scheme

Problem 10.1: Equation of the Regression Line of x on y


- Correct use of the GDC to calculate the regression line [2 marks per part]
- Accurate equation of the regression line in the form x = a + by [2 marks per part]
- Valid explanation of the difference between x-on-y and y-on-x regression lines [2 marks]

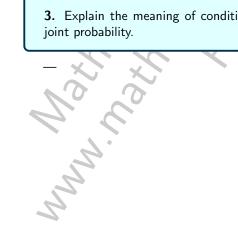
Problem 10.2: Using the Regression Line for Prediction

- Correct prediction of x for given values of y [2 marks per part]
- Valid discussion of the dangers of extrapolation [2 marks]
- Explanation of when to use the regression line of x on y [2 marks]

Additional Points

- Clear presentation of solutions [1 mark]
- Logical reasoning in calculations [1 mark]

11 Probability: Formal Conditional Probability

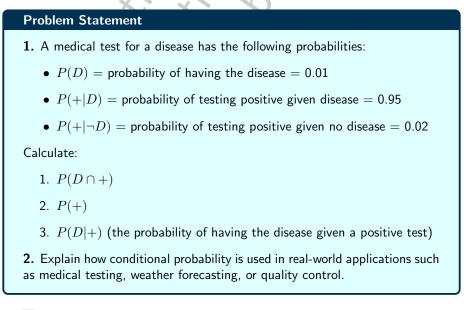

Problem 11.1: Using the Conditional Probability Formula

Problem Statement 1. Given P(A) = 0.6, P(B) = 0.4, and $P(A \cap B) = 0.2$, calculate: 1. P(A|B)2. P(B|A)Show all steps using the formula: $P(A|B) = \frac{P(A \cap B)}{P(B)}$ 2. In a group of students: • 60% study mathematics • 40% study physics • 25% study both mathematics and physics

Calculate:

- 1. The probability that a student studies mathematics given that they study physics.
- 2. The probability that a student studies physics given that they study mathematics.

3. Explain the meaning of conditional probability and how it differs from joint probability.



Problem 11.2: Testing for Independence

Problem Statement
1. Two events A and B are independent if $P(A B) = P(A)$. Use this to test whether the following events are independent:
1. Given $P(A) = 0.3$, $P(B) = 0.4$, and $P(A \cap B) = 0.12$
2. Given $P(A) = 0.5$, $P(B) = 0.6$, and $P(A \cap B) = 0.3$
2. A card is drawn from a standard deck of 52 cards. Let:
• A be the event of drawing a heart
• B be the event of drawing a red card
Determine whether events A and B are independent. 3. Explain the three equivalent conditions for independence:
• $P(A B) = P(A)$
• $P(B A) = P(B)$
• $P(A \cap B) = P(A)P(B)$

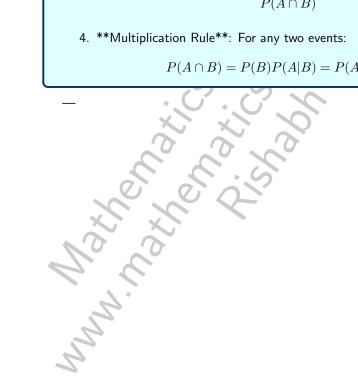
Problem 11.3: Applications of Conditional Probability

5

⁽c) 2025 Mathematics Elevate Academy Rishabh Kumar (IIT G & ISI Alumnus) Page 48

Key Concepts and Definitions

1. **Conditional Probability**: The probability of event A occurring given that event B has occurred:


$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

- 2. **Independent Events**: Events A and B are independent if any of the following equivalent conditions hold:
 - P(A|B) = P(A)
 - P(B|A) = P(B)
 - $P(A \cap B) = P(A)P(B)$
- 3. **Joint Probability**: The probability of both events occurring:

 $P(A \cap B)$

4. **Multiplication Rule**: For any two events:

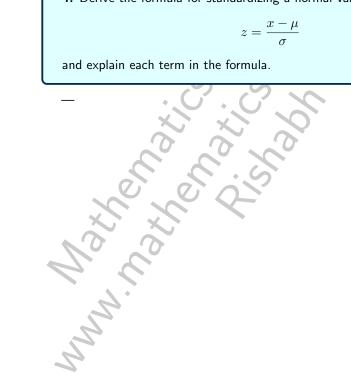
$$P(A \cap B) = P(B)P(A|B) = P(A)P(B|A)$$

Marking Scheme
Problem 11.1: Using the Conditional Probability Formula
• Correct calculation of conditional probabilities [2 marks per part]
• Clear use of the conditional probability formula [2 marks per part]
• Valid explanation of conditional probability [2 marks]
Problem 11.2: Testing for Independence
• Correct testing for independence [2 marks per part]
• Valid explanation of the conditions for independence [2 marks]
• Clear reasoning in determining independence [2 marks]
Problem 11.3: Applications of Conditional Probability
• Correct calculation of probabilities [2 marks per part]
Valid explanation of real-world applications [2 marks]
• Clear understanding of the context [2 marks]
Additional Points
Clear presentation of solutions [1 mark]
• Logical reasoning in calculations [1 mark]
555

Probability: Standardizing Normal Variables 12

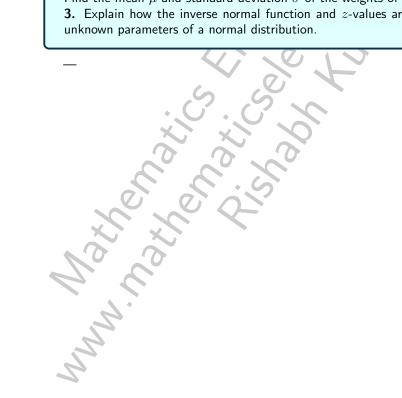
Problem 12.1: Finding Z-Values

Problem Statement
1. For a normal distribution with mean $\mu=50$ and standard deviation $\sigma=10,$ calculate the $z\text{-value for:}$


- 1. x = 60
- 2. x = 40
- 3. x = 50

2. Explain the meaning of a z-value and how it represents the number of standard deviations a value is from the mean.

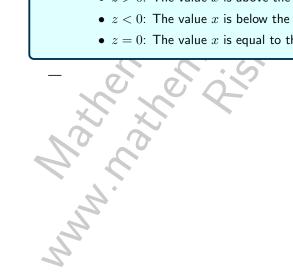
3. A student scores 85 on a test where the mean score is 70 and the standard deviation is 10. Find the z-value for the student's score and interpret its meaning.


4. Derive the formula for standardizing a normal variable:

$$x = \frac{x - \mu}{\sigma}$$

Problem 12.2: Inverse Normal Calculations with Unknown Mean and Standard Deviation

Problem Statement
1. A random variable X is normally distributed. It is known that:
• $P(X < 70) = 0.25$
• $P(X > 90) = 0.10$
Use the inverse normal function on your GDC to find the mean μ and stan- dard deviation σ of X . 2. The weights of apples in a farm are normally distributed. It is known that:
• 5% of the apples weigh less than 150 g.
• 10% of the apples weigh more than 200 g.
Find the mean μ and standard deviation σ of the weights of the apples. 3. Explain how the inverse normal function and z-values are used to find unknown parameters of a normal distribution.


Key Concepts and Definitions

1. **Z-Value (Standard Score)**: A z-value represents the number of standard deviations a value x is from the mean μ . It is calculated using the formula:

$$z = \frac{x - \mu}{\sigma}$$

where:

- x is the value of the random variable.
- μ is the mean of the distribution.
- σ is the standard deviation of the distribution.
- 2. **Standard Normal Distribution**: A normal distribution with mean $\mu = 0$ and standard deviation $\sigma = 1$. Z-scores are used to standardize any normal distribution to the standard normal distribution.
- 3. **Inverse Normal Calculations**: The process of finding the value of x or the parameters μ and σ for a given probability. This is done using the inverse normal function on a GDC and the relationship between z-values and probabilities.
- 4. **Key Properties**:
 - z > 0: The value x is above the mean.
 - z < 0: The value x is below the mean.
 - z = 0: The value x is equal to the mean.

Marking Scheme
Problem 12.1: Finding Z-Values
• Correct calculation of z-values using the formula [2 marks per part]
• Valid explanation of the meaning of z-values [2 marks]
Clear derivation of the standardization formula [2 marks]
Problem 12.2: Inverse Normal Calculations with Unknown Mean and Standard Deviation
 Correct use of the inverse normal function on the GDC [2 marks per part]
- Accurate calculation of the mean μ and standard deviation σ [2 marks per part]
• Valid explanation of the process and its applications [2 marks]
Additional Points
Clear presentation of solutions [1 mark]
• Logical reasoning in calculations [1 mark]

Marca 2100

13 Probability: Bayes' Theorem

Problem 13.1: Two-Event Bayes' Theorem

Problem Statement
1. Given:
• $P(B) = 0.4$
• $P(A B) = 0.3$
• $P(A \neg B) = 0.2$
Calculate $P(B A)$ using:
$P(B A) = \frac{P(B)P(A B)}{P(B)P(A B) + P(\neg B)P(A \neg B)}$
2. A medical test for a disease has the following probabilities:
• Probability of having the disease: $P(D) = 0.01$
• Probability of a positive test given disease: $P(+ D) = 0.95$
• Probability of a positive test given no disease: $P(+ \neg D) = 0.02$
Calculate the probability of having the disease given a positive test result

using:

- $1. \ \ {\rm The \ formula \ method}$
- 2. A tree diagram method

3. Explain the relationship between Bayes' theorem and conditional probability.

- Minny

Problem 13.2: Three-Event Bayes' Theorem

Problem Statement 1. A factory has three machines (A, B, and C) that produce identical items. The probabilities are: • Machine A produces 30% of items: P(A) = 0.3• Machine B produces 45% of items: P(B) = 0.45• Machine C produces 25% of items: P(C) = 0.25The probability of a defective item from each machine is: • Machine A: P(D|A) = 0.02• Machine B: P(D|B) = 0.03• Machine C: P(D|C) = 0.04Calculate: 1. The probability that a randomly selected item is defective. 2. The probability that a defective item was produced by Machine B. **2.** Use the formula: $P(B_i|A) = \frac{P(B_i)P(A|B_i)}{P(B_1)P(A|B_1) + P(B_2)P(A|B_2) + P(B_3)P(A|B_3)}$ to solve a three-event problem and compare the result with the tree diagram

method. 3. Explain the advantages and disadvantages of using:

- 1. The formula method
- 2. The tree diagram method

Key Concepts and Definitions 1. **Bayes' Theorem (Two Events)**: $P(B|A) = \frac{P(B)P(A|B)}{P(B)P(A|B) + P(\neg B)P(A|\neg B)}$ or using the conditional probability formula: $P(B|A) = \frac{P(A \cap B)}{P(A)}$ 2. **Bayes' Theorem (Three Events)**: $P(B_i|A) = \frac{P(B_i)P(A|B_i)}{P(B_1)P(A|B_1) + P(B_2)P(A|B_2) + P(B_3)P(A|B_3)}$ 3. **Tree Diagram Method**: • Draw branches for each event and their complements. • Write probabilities along branches. • Multiply along branches for joint probabilities. • Add across branches for total probabilities.

4. **Applications**: Bayes' theorem is used in:

- Medical diagnosis
- Quality control
- Machine learning
- Decision making under uncertainty

MMM

Marking Scheme
Problem 13.1: Two-Event Bayes' Theorem
• Correct calculation using the formula method [2 marks per part]
• Accurate construction and use of tree diagram [2 marks per part]
 Valid explanation of the relationship with conditional probability [2 marks]
Problem 13.2: Three-Event Bayes' Theorem
• Correct calculation of probabilities [2 marks per part]
• Accurate use of the three-event formula [2 marks]
Valid comparison of methods [2 marks]
Clear explanation of advantages and disadvantages [2 marks]
Additional Points
Clear presentation of solutions [1 mark]
Logical reasoning in calculations [1 mark]
Manna and a start and a start and a start a st

Probability: Random Variables 14

Problem 14.1: Variance of a Discrete Random Variable

Problem Statement
1. For the following probability distribution, calculate the variance $Var(X)$:
$\begin{array}{ c c c c }\hline X & P(X) \\ \hline 1 & 0.2 \\ 2 & 0.3 \\ 3 & 0.4 \\ 4 & 0.1 \\ \hline \end{array}$
Use the formula:
$Var(X) = \sum x^2 P(X = x) - \mu^2, \text{where } \mu = E(X).$
2. A game involves rolling a fair six-sided die. The random variable X represents the winnings, where:
$X = \begin{cases} 5 & \text{if a 6 is rolled,} \\ 0 & \text{otherwise.} \end{cases}$
Find the variance $Var(X)$.

Problem 14.2: Continuous Random Variables and Probability **Density Functions (PDFs)**

Problem Statement 1. A continuous random variable X has the probability density function: $f(x) = \begin{cases} kx^2 & \text{for } 0 \le x \le 2, \\ 0 & \text{otherwise.} \end{cases}$ 1. Find the value of k such that $\int_{-\infty}^{\infty} f(x) dx = 1.$ 2. Calculate $P(0.5 \le X \le 1.5)$. 2. Explain the properties of a probability density function (PDF): • $f(x) \ge 0$ for all x. • $\int_{-\infty}^{\infty} f(x) dx = 1.$

Problem 14.3: Piecewise Defined PDFs

Problem Statement

1. A continuous random variable *X* has the following piecewise PDF:

$$f(x) = \begin{cases} 2x & \text{for } 0 \le x \le 1, \\ 2 - 2x & \text{for } 1 < x \le 2, \\ 0 & \text{otherwise.} \end{cases}$$

- 1. Verify that f(x) is a valid PDF.
- 2. Find $P(0.5 \le X \le 1.5)$.
- 3. Identify the interval in which the median lies and calculate the median m such that:

$$\int_{-\infty}^{m} f(x)dx = \frac{1}{2}$$

Problem 14.4: Mean, Variance, and Standard Deviation of Continuous Random Variables

Problem Statement

1. A continuous random variable \boldsymbol{X} has the PDF:

$$(x) = \begin{cases} 3x^2 & \text{for } 0 \le x \le 1, \\ 0 & \text{otherwise.} \end{cases}$$

1. Find the mean E(X) using:

$$E(X) = \int_{-\infty}^{\infty} x f(x) dx.$$

2. Find $E(X^2)$ using:

$$E(X^2) = \int_{-\infty}^{\infty} x^2 f(x) dx$$

3. Calculate the variance Var(X) using:

$$Var(X) = E(X^2) - [E(X)]^2$$

2. Explain how to calculate the mean and variance for a piecewise PDF by splitting the integrals into separate parts.

Problem 14.5: Linear Transformations of Random Variables

Problem Statement

1. A random variable X has E(X)=5 and $\mathsf{Var}(X)=4.$ Find E(2X+3) and $\mathsf{Var}(2X+3)$ using:

$$E(aX+b) = aE(X) + b$$
, $Var(aX+b) = a^2Var(X)$.

2. A game involves rolling a fair six-sided die. The random variable X represents the winnings, where:

$$X = \begin{cases} 10 & \text{if a 6 is rolled,} \\ -2 & \text{otherwise.} \end{cases}$$

Find the value of b such that the game is fair, i.e., E(X + b) = 0.

(c) 2025 Mathematics Elevate Academy Rishabh Kumar (IIT G & ISI Alumnus) Page 61

Key Concepts and Definitions 1. **Variance of a Discrete Random Variable**: $\mathsf{Var}(X) = \sum x^2 P(X = x) - \mu^2, \quad \text{where } \mu = E(X).$ 2. **Continuous Random Variables**: A continuous random variable Xis represented by a probability density function (PDF) f(x), which satisfies: • $f(x) \ge 0$ for all x. • $\int_{-\infty}^{\infty} f(x) dx = 1.$ 3. **Mean and Variance of a Continuous Random Variable**: $E(X) = \int_{-\infty}^{\infty} x f(x) dx, \quad E(X^2) = \int_{-\infty}^{\infty} x^2 f(x) dx, \quad \text{Var}(X) = E(X^2) - [E(X)]^2.$ 4. ******Linear Transformations******: For a random variable X: E(aX + b) = aE(X) + b, $Var(aX + b) = a^2 Var(X)$. 5. **Median and Mode of a Continuous Random Variable**: • The mode corresponds to the maximum value of f(x). • The median *m* satisfies: $\int_{-\infty}^{m} f(x)dx = \frac{1}{2}.$ Marci

Marking Scheme Problem 14.1: Variance of a Discrete Random Variable • Correct calculation of E(X) and Var(X) [2 marks per part] • Valid explanation of the formula for variance [2 marks] Problem 14.2: Continuous Random Variables and PDFs • Correct verification of PDF properties [2 marks] • Accurate calculation of probabilities [2 marks per part] Problem 14.3: Piecewise Defined PDFs • Correct verification of PDF validity [2 marks] • Accurate calculation of probabilities and median [2 marks per part] Problem 14.4: Mean, Variance, and Standard Deviation of Continuous Random Variables • Correct calculation of E(X), $E(X^2)$, and Var(X) [2 marks per part] • Valid explanation of splitting integrals for piecewise PDFs [2 marks] Problem 14.5: Linear Transformations of Random Variables • Correct calculation of E(aX + b) and Var(aX + b) [2 marks per part] • Accurate determination of b for a fair game [2 marks] **Additional Points**

- Clear presentation of solutions [1 mark]
- Logical reasoning in calculations [1 mark]

I'm

Conclusion

Mathematics is not just about understanding theory; it is about applying concepts to solve problems effectively. This guide has provided you with a collection of expertly crafted practice problems focused on Probability, designed to challenge your understanding and enhance your problem-solving skills.

For detailed solutions and answers, keep following me — they will be available soon! If you're looking for personalized guidance, book a one-on-one mentorship session with me to deepen your understanding of IB Mathematics AA/AI HL, Probability & Statistics, or even Olympiad-level problems. Together, we can build the confidence and skills you need to excel in mathematics.

As you prepare for your exams, remember:

- **Practice is the key to success**: The more problems you solve, the more confident and efficient you become. Focus on understanding the logic behind each solution rather than memorizing formulas.
- Learn from mistakes: Every mistake is an opportunity to grow. Analyze where you went wrong and refine your approach.
- Time management is crucial: Simulate exam conditions to improve your speed and accuracy under pressure.

If you're aiming for a guaranteed improvement and want to elevate your performance to the next level, consider applying for my **exclusive personalized mentorship program**. As an alumnus of IIT Guwahati and ISI, with over 5 years of teaching experience from the school level to university students, now mentoring high-achieving IB students, I specialize in:

- **Tailored guidance**: Customized study plans and strategies based on your strengths and weaknesses.
- Exam-focused preparation: Insights into examiner expectations and tips to maximize your score.
- Beyond IB HL Problem-Solving: My mentorship is not limited to IB HL Mathematics. I will enrich your mathematical thinking to push you toward Olympiad-level problem-solving and help you excel in quantitative aptitude, preparing you for competitive exams and real-world challenges.
- **One-on-one mentorship**: Direct support to clarify doubts, build confidence, and achieve your goals.

⁽c) 2025 Mathematics Elevate Academy Rishabh Kumar (IIT G & ISI Alumnus) Page 64

IB DP Mathematics - Probability & Statistics

Join the ranks of students who have transformed their performance and achieved top scores with my mentorship. Visit www.mathematicselevateacademy.com to access free resources, book a session, or apply for the program. Let's work together to make your IB Mathematics journey a success!

"Success in mathematics comes not from the number of problems you've solved, but from the confidence you've gained in solving them."

Rishabh Kumar Founder, Mathematics Elevate Academy Elite Mentor for IB Mathematics Alumnus of IIT Guwahati & Indian Statistical Institute Thank You! **Rishabh Kumar Mathematics Elevate Academy** www.mathematicselevateacademy.com

(c) 2025 Mathematics Elevate Academy Rishabh Kumar (IIT G & ISI Alumnus) Page 65