🧭 Scalar Product & Vector Projections — Geometry Meets Algebra

Author: Rishabh Kumar (IIT + ISI | Global Math Mentor)**
Published: October 2025
Category: Vectors | Geometry in Space


🔹 Introduction

Vectors describe direction and magnitude — but to analyze how two vectors relate, we need tools like the scalar (dot) product and vector projection.

These concepts reveal:

  • How much one vector aligns with another,
  • The angle between them, and
  • How to break a vector into meaningful geometric components.

Scalar product measures “alignment”; projection measures “influence.”


⚡️ 1️⃣ The Scalar (Dot) Product

The scalar product (or dot product) of two vectors gives a single number — a scalar — that quantifies their directional relationship.

For vectors a\mathbf{a}a and b\mathbf{b}b: a⋅b=∣a∣ ∣b∣ cos⁡θ\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}|\,|\mathbf{b}|\,\cos\thetaa⋅b=∣a∣∣b∣cosθ

Where θ\thetaθ = angle between a\mathbf{a}a and b\mathbf{b}b.


🔹 Algebraic Form

If a=a1i+a2j+a3k,b=b1i+b2j+b3k,\mathbf{a} = a_1\mathbf{i} + a_2\mathbf{j} + a_3\mathbf{k}, \quad \mathbf{b} = b_1\mathbf{i} + b_2\mathbf{j} + b_3\mathbf{k},a=a1​i+a2​j+a3​k,b=b1​i+b2​j+b3​k,

then a⋅b=a1b1+a2b2+a3b3\mathbf{a} \cdot \mathbf{b} = a_1b_1 + a_2b_2 + a_3b_3a⋅b=a1​b1​+a2​b2​+a3​b3​

Produces a scalar value (number), not a vector.


🔹 Geometric Meaning

a⋅b=∣a∣∣b∣cos⁡θ\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}||\mathbf{b}|\cos\thetaa⋅b=∣a∣∣b∣cosθ

  • If θ=0∘\theta = 0^\circθ=0∘ → vectors are parallel, a⋅b=∣a∣∣b∣\mathbf{a}\cdot\mathbf{b} = |\mathbf{a}||\mathbf{b}|a⋅b=∣a∣∣b∣
  • If θ=90∘\theta = 90^\circθ=90∘ → vectors are perpendicular, a⋅b=0\mathbf{a}\cdot\mathbf{b} = 0a⋅b=0
  • If θ=180∘\theta = 180^\circθ=180∘ → vectors are opposite, a⋅b=−∣a∣∣b∣\mathbf{a}\cdot\mathbf{b} = -|\mathbf{a}||\mathbf{b}|a⋅b=−∣a∣∣b∣

The sign of the dot product shows whether vectors point in roughly the same or opposite direction.


🔹 Example 1 — Finding the Angle Between Vectors

a=2i+3j,b=4i+j\mathbf{a} = 2\mathbf{i} + 3\mathbf{j}, \quad \mathbf{b} = 4\mathbf{i} + \mathbf{j}a=2i+3j,b=4i+j a⋅b=(2)(4)+(3)(1)=11\mathbf{a}\cdot\mathbf{b} = (2)(4) + (3)(1) = 11a⋅b=(2)(4)+(3)(1)=11 ∣a∣=22+32=13,∣b∣=42+12=17|\mathbf{a}| = \sqrt{2^2 + 3^2} = \sqrt{13}, \quad |\mathbf{b}| = \sqrt{4^2 + 1^2} = \sqrt{17}∣a∣=22+32​=13​,∣b∣=42+12​=17​ cos⁡θ=111317=11221\cos\theta = \frac{11}{\sqrt{13}\sqrt{17}} = \frac{11}{\sqrt{221}}cosθ=13​17​11​=221​11​ θ=cos⁡−1(11221)\theta = \cos^{-1}\left(\frac{11}{\sqrt{221}}\right)θ=cos−1(221​11​)

Angle ≈ 42.3°


🔹 Example 2 — Testing Perpendicularity

a=3i−2j,b=2i+3j\mathbf{a} = 3\mathbf{i} – 2\mathbf{j}, \quad \mathbf{b} = 2\mathbf{i} + 3\mathbf{j}a=3i−2j,b=2i+3j a⋅b=(3)(2)+(−2)(3)=0\mathbf{a}\cdot\mathbf{b} = (3)(2) + (-2)(3) = 0a⋅b=(3)(2)+(−2)(3)=0

✅ Vectors are perpendicular.


🎯 2️⃣ Vector Projection

While the dot product tells you how aligned two vectors are, the projection tells you how much of one vector lies along another.

Think of shining a light — the shadow of one vector on another is its projection.


🔹 Scalar Projection (Magnitude Only)

The scalar projection of a\mathbf{a}a on b\mathbf{b}b is: compb(a)=a⋅b∣b∣\text{comp}_{\mathbf{b}}(\mathbf{a}) = \frac{\mathbf{a}\cdot\mathbf{b}}{|\mathbf{b}|}compb​(a)=∣b∣a⋅b​

✅ This gives a number (positive or negative) depending on direction.


🔹 Vector Projection (With Direction)

The vector projection of a\mathbf{a}a on b\mathbf{b}b is: projb(a)=a⋅b∣b∣2 b\text{proj}_{\mathbf{b}}(\mathbf{a}) = \frac{\mathbf{a}\cdot\mathbf{b}}{|\mathbf{b}|^2}\,\mathbf{b}projb​(a)=∣b∣2a⋅b​b

✅ This gives an actual vector lying on b\mathbf{b}b.


🔹 Example — Projection of One Vector on Another

a=3i+4j,b=4i+0j\mathbf{a} = 3\mathbf{i} + 4\mathbf{j}, \quad \mathbf{b} = 4\mathbf{i} + 0\mathbf{j}a=3i+4j,b=4i+0j a⋅b=(3)(4)+(4)(0)=12\mathbf{a}\cdot\mathbf{b} = (3)(4) + (4)(0) = 12a⋅b=(3)(4)+(4)(0)=12 ∣b∣2=42+02=16|\mathbf{b}|^2 = 4^2 + 0^2 = 16∣b∣2=42+02=16 projb(a)=1216 b=34(4i)=3i\text{proj}_{\mathbf{b}}(\mathbf{a}) = \frac{12}{16}\,\mathbf{b} = \frac{3}{4}(4\mathbf{i}) = 3\mathbf{i}projb​(a)=1612​b=43​(4i)=3i

Vector projection = 3i3\mathbf{i}3i
(only the horizontal component of a\mathbf{a}a lies along b\mathbf{b}b).


🔹 Geometric Insight

If a\mathbf{a}a makes an angle θ\thetaθ with b\mathbf{b}b:

  • Projection length = ∣a∣cos⁡θ|\mathbf{a}|\cos\theta∣a∣cosθ
  • Projection vector = ∣a∣cos⁡θ b^|\mathbf{a}|\cos\theta \, \hat{\mathbf{b}}∣a∣cosθb^, where b^=b∣b∣\hat{\mathbf{b}} = \frac{\mathbf{b}}{|\mathbf{b}|}b^=∣b∣b​

Scalar product = (Projection length) × (Magnitude of other vector).


🔹 Example — Work Done in Physics

Work WWW done by a constant force F\mathbf{F}F moving an object through displacement s\mathbf{s}s: W=F⋅s=∣F∣∣s∣cos⁡θW = \mathbf{F}\cdot\mathbf{s} = |\mathbf{F}||\mathbf{s}|\cos\thetaW=F⋅s=∣F∣∣s∣cosθ

✅ The scalar product measures the useful component of force along motion — a real-world projection example.


🔹 Summary Table

ConceptFormulaResult TypeMeaning
Dot Product( \mathbf{a}\cdot\mathbf{b} =\mathbf{a}
Scalar Projection( \frac{\mathbf{a}\cdot\mathbf{b}}{\mathbf{b}} )
Vector Projection( \frac{\mathbf{a}\cdot\mathbf{b}}{\mathbf{b}^2}\mathbf{b} )

🔹 Common Mistakes

  1. ❌ Forgetting the direction in vector projection.
  2. ❌ Mixing up ∣b∣|\mathbf{b}|∣b∣ and ∣b∣2|\mathbf{b}|^2∣b∣2 in denominator.
  3. ❌ Using degrees without converting to radians (in trig-based dot products).
  4. ❌ Thinking projection is perpendicular — it’s along the other vector.

🌟 Why It Matters

Scalar product and projections unite geometry and physics — used in:

  • Calculating work, forces, and angles,
  • Understanding orthogonality and perpendicularity,
  • Analyzing motion and mechanics,
  • Computing components in 3D vector spaces (IB HL / A Level P4).

📘 Learn Beyond Computation

At Math By Rishabh, vectors are not formulas — they’re geometry in motion.

In the Mathematics Elevate Mentorship, you’ll:
✅ Visualize vector operations in 3D,
✅ Derive formulas from geometry,
✅ Master advanced vector problems for IB, A Level, and STEP.

🚀 Turn vectors into visualization.
👉 Book your personalized mentorship session now at MathByRishabh.com

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top