🔷 Modulus–Argument Form of a Complex Number — The Polar Perspective

Author: Rishabh Kumar (IIT + ISI | Global Math Mentor)**
Published: October 2025
Category: Complex Numbers | Geometry & Algebra


🔹 Introduction

Every complex number can be represented algebraically as z=x+iyz = x + iyz=x+iy.
But there’s a more powerful way to express it — using length and angle instead of x and y.

This is called the Modulus–Argument (Polar) Form, or Modulus–Augmented Form, of a complex number.

It connects algebra with geometry, showing complex numbers as rotations and scalings on the Argand plane.


🧭 1️⃣ Cartesian Form vs Polar Form

RepresentationExpressionKey Idea
Cartesian (Rectangular)z=x+iyz = x + iyz=x+iyReal + Imaginary parts
Modulus–Argument (Polar)z=r(cos⁡θ+isin⁡θ)z = r(\cos\theta + i\sin\theta)z=r(cosθ+isinθ)Length + Angle representation

🔹 Where do r and θ come from?

For z=x+iyz = x + iyz=x+iy: r=∣z∣=x2+y2r = |z| = \sqrt{x^2 + y^2}r=∣z∣=x2+y2​ θ=arg⁡(z)=tan⁡−1 ⁣(yx)\theta = \arg(z) = \tan^{-1}\!\left(\frac{y}{x}\right)θ=arg(z)=tan−1(xy​)

✅ So we can write: z=r(cos⁡θ+isin⁡θ)\boxed{z = r(\cos\theta + i\sin\theta)}z=r(cosθ+isinθ)​


🔹 Example 1

z=1+i3z = 1 + i\sqrt{3}z=1+i3​ r=12+(3)2=2,θ=tan⁡−1 ⁣(31)=60°=π3r = \sqrt{1^2 + (\sqrt{3})^2} = 2, \quad \theta = \tan^{-1}\!\left(\frac{\sqrt{3}}{1}\right) = 60° = \frac{\pi}{3}r=12+(3​)2​=2,θ=tan−1(13​​)=60°=3π​ z=2(cos⁡π3+isin⁡π3)\boxed{z = 2(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3})}z=2(cos3π​+isin3π​)​


⚡️ 2️⃣ The Euler Form

Using Euler’s identity: eiθ=cos⁡θ+isin⁡θe^{i\theta} = \cos\theta + i\sin\thetaeiθ=cosθ+isinθ

we can write: z=reiθ\boxed{z = re^{i\theta}}z=reiθ​

This is the exponential form of a complex number.

✅ It’s compact, elegant, and makes powers & roots easy (via De Moivre’s theorem).


🔹 Example 2

z=4(cos⁡60°+isin⁡60°)=4eiπ/3z = 4(\cos60° + i\sin60°) = 4e^{i\pi/3}z=4(cos60°+isin60°)=4eiπ/3


🎯 3️⃣ Conversion Between Forms

From Cartesian → Polar

If z=x+iyz = x + iyz=x+iy: r=x2+y2,θ=tan⁡−1 ⁣(yx)r = \sqrt{x^2 + y^2}, \quad \theta = \tan^{-1}\!\left(\frac{y}{x}\right)r=x2+y2​,θ=tan−1(xy​)

Then z=r(cos⁡θ+isin⁡θ)z = r(\cos\theta + i\sin\theta)z=r(cosθ+isinθ).


From Polar → Cartesian

If z=r(cos⁡θ+isin⁡θ)z = r(\cos\theta + i\sin\theta)z=r(cosθ+isinθ): x=rcos⁡θ,y=rsin⁡θx = r\cos\theta, \quad y = r\sin\thetax=rcosθ,y=rsinθ

So z=x+iyz = x + iyz=x+iy.


🔹 Example 3

Convert z=5(cos⁡120°+isin⁡120°)z = 5(\cos120° + i\sin120°)z=5(cos120°+isin120°) to Cartesian form. x=5cos⁡120°=5(−12)=−2.5x = 5\cos120° = 5(-\tfrac{1}{2}) = -2.5x=5cos120°=5(−21​)=−2.5 y=5sin⁡120°=5(32)=532y = 5\sin120° = 5(\tfrac{\sqrt{3}}{2}) = \tfrac{5\sqrt{3}}{2}y=5sin120°=5(23​​)=253​​ z=−2.5+i532\boxed{z = -2.5 + i\frac{5\sqrt{3}}{2}}z=−2.5+i253​​​


🌀 4️⃣ Geometric Meaning

(Illustration: Argand plane with point P(r,θ)P(r, \theta)P(r,θ), vector OP = r, angle θ with real axis.)

  • rrr: distance from origin (modulus)
  • θ\thetaθ: angle with positive real axis (argument)

Each complex number corresponds to a point P(r,θ)P(r, \theta)P(r,θ) or vector OPOPOP from origin.


🔺 5️⃣ Principal Argument

Since angles can differ by multiples of 2π2\pi2π: General argument: θ+2nπ,n∈Z\text{General argument: } \theta + 2n\pi, \quad n \in \mathbb{Z}General argument: θ+2nπ,n∈Z

But we usually define the principal argument as: −π<arg⁡(z)≤π\boxed{-\pi < \arg(z) \leq \pi}−π<arg(z)≤π​

✅ Keeps one unique angle for each complex number.


🔹 Example 4

z=−1−iz = -1 – iz=−1−i r=2, tan⁡−1 ⁣(−1−1)=45° but point in 3rd quadrant → θ=−135°=−3π4r = \sqrt{2}, \ \tan^{-1}\!\left(\frac{-1}{-1}\right) = 45° \text{ but point in 3rd quadrant → } \theta = -135° = -\frac{3\pi}{4}r=2​, tan−1(−1−1​)=45° but point in 3rd quadrant → θ=−135°=−43π​ z=2(cos⁡(−3π4)+isin⁡(−3π4))\boxed{z = \sqrt{2}(\cos(-\frac{3\pi}{4}) + i\sin(-\frac{3\pi}{4}))}z=2​(cos(−43π​)+isin(−43π​))​


🧮 6️⃣ Multiplication & Division in Polar Form

Using: z1=r1(cos⁡θ1+isin⁡θ1),z2=r2(cos⁡θ2+isin⁡θ2)z_1 = r_1(\cos\theta_1 + i\sin\theta_1), \quad z_2 = r_2(\cos\theta_2 + i\sin\theta_2)z1​=r1​(cosθ1​+isinθ1​),z2​=r2​(cosθ2​+isinθ2​)

Multiplication:

z1z2=r1r2[cos⁡(θ1+θ2)+isin⁡(θ1+θ2)]z_1z_2 = r_1r_2[\cos(\theta_1+\theta_2) + i\sin(\theta_1+\theta_2)]z1​z2​=r1​r2​[cos(θ1​+θ2​)+isin(θ1​+θ2​)]

Multiply moduli, add arguments.

Division:

z1z2=r1r2[cos⁡(θ1−θ2)+isin⁡(θ1−θ2)]\frac{z_1}{z_2} = \frac{r_1}{r_2}[\cos(\theta_1-\theta_2) + i\sin(\theta_1-\theta_2)]z2​z1​​=r2​r1​​[cos(θ1​−θ2​)+isin(θ1​−θ2​)]

Divide moduli, subtract arguments.


🔹 Example 5

Let z1=2(cos⁡45°+isin⁡45°)z_1 = 2(\cos45° + i\sin45°)z1​=2(cos45°+isin45°), z2=3(cos⁡30°+isin⁡30°)z_2 = 3(\cos30° + i\sin30°)z2​=3(cos30°+isin30°) z1z2=6(cos⁡75°+isin⁡75°)z_1z_2 = 6(\cos75° + i\sin75°)z1​z2​=6(cos75°+isin75°) z1z2=23(cos⁡15°+isin⁡15°)\frac{z_1}{z_2} = \frac{2}{3}(\cos15° + i\sin15°)z2​z1​​=32​(cos15°+isin15°)

✅ Geometrically: Rotation by 45° + 30° = 75°, scaling ×3.


🧩 7️⃣ Why Polar Form Matters

AdvantageExplanation
Simplifies powers & rootsvia De Moivre’s theorem
Geometric interpretationrotation + scaling
Compact exponential formz=reiθz = re^{i\theta}z=reiθ
Foundation for loci & transformationsused in IB HL & A Level vectors
Links trigonometry and complex algebrabridges geometry & analysis

🔹 Common Mistakes

  1. ❌ Using degree angles in radians or vice versa.
  2. ❌ Forgetting sign of argument (quadrant errors).
  3. ❌ Ignoring principal argument range.
  4. ❌ Confusing modulus with argument.

🌟 Why It Matters

The modulus–argument form makes complex numbers geometrically meaningful:
they become rotations, scalings, and transformations in the plane.

It’s essential for understanding:

  • De Moivre’s theorem
  • Roots of unity
  • Loci and transformations
  • Argand diagram interpretations

Algebra + Geometry = Complex Beauty.


📘 Learn Beyond the Formula

At Math By Rishabh, complex numbers aren’t just equations — they’re pictures of algebraic beauty.

In the Mathematics Elevate Mentorship Program, you’ll:
✅ Master conversions between forms,
✅ Visualize multiplication as rotation,
✅ Derive and apply polar forms to STEP-level problems.

🚀 Think geometrically, solve algebraically.
👉 Book your personalized mentorship session now at MathByRishabh.com

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top