Mean, Median, and Mode of Grouped Data – A Complete Guide

When data is large, instead of writing down every observation, we often organize it into a frequency distribution table. The measures of central tendency (Mean, Median, Mode) can then be calculated using special formulas for grouped data.

In this article, we’ll explain each measure in detail with examples.


1. Mean of Grouped Data

Formula (Step-Deviation Method)

xˉ=a+∑fiui∑fi⋅h\bar{x} = a + \frac{\sum f_i u_i}{\sum f_i} \cdot hxˉ=a+∑fi​∑fi​ui​​⋅h

Where:

  • aaa = Assumed mean (any mid-point chosen for convenience)
  • fif_ifi​ = frequency of the ithi^\text{th}ith class
  • xix_ixi​ = mid-point of the ithi^\text{th}ith class
  • hhh = class size (width of each class)
  • ui=xi−ahu_i = \frac{x_i – a}{h}ui​=hxi​−a​

Example

The marks of 50 students are given in the following table:

Class IntervalFrequency (fif_ifi​)
0–105
10–208
20–3012
30–4015
40–5010

Step 1: Find mid-points (xix_ixi​) xi=Lower limit + Upper limit2x_i = \frac{\text{Lower limit + Upper limit}}{2}xi​=2Lower limit + Upper limit​

Classfif_ifi​xix_ixi​ui=xi−ahu_i = \frac{x_i – a}{h}ui​=hxi​−a​fiuif_i u_ifi​ui​
0–1055-2-10
10–20815-1-8
20–30122500
30–401535115
40–501045220

Here, a=25a = 25a=25, h=10h = 10h=10.

Step 2: Apply formula xˉ=a+∑fiui∑fi⋅h\bar{x} = a + \frac{\sum f_i u_i}{\sum f_i} \cdot hxˉ=a+∑fi​∑fi​ui​​⋅h xˉ=25+1750⋅10\bar{x} = 25 + \frac{17}{50} \cdot 10xˉ=25+5017​⋅10 xˉ=25+3.4=28.4\bar{x} = 25 + 3.4 = 28.4xˉ=25+3.4=28.4

Answer: Mean = 28.4


2. Median of Grouped Data

Formula

Median=L+(N2−CFf)⋅h\text{Median} = L + \left( \frac{\frac{N}{2} – CF}{f} \right) \cdot hMedian=L+(f2N​−CF​)⋅h

Where:

  • LLL = lower boundary of the median class
  • NNN = total frequency (∑fi\sum f_i∑fi​)
  • CFCFCF = cumulative frequency before the median class
  • fff = frequency of the median class
  • hhh = class width

Example

Using the same table:

ClassFrequencyCumulative Frequency
0–1055
10–20813
20–301225
30–401540
40–501050

Step 1: Find N=50N = 50N=50.
Median class = Class where N/2=25N/2 = 25N/2=25.
Here, the 20–30 class contains the 25th value → Median class = 20–30.

Step 2: Apply formula L=20,  CF=13,  f=12,  h=10L = 20, \; CF = 13, \; f = 12, \; h = 10L=20,CF=13,f=12,h=10 Median=20+(25−1312)⋅10\text{Median} = 20 + \left( \frac{25 – 13}{12} \right) \cdot 10Median=20+(1225−13​)⋅10 Median=20+(1212)⋅10\text{Median} = 20 + \left( \frac{12}{12} \right) \cdot 10Median=20+(1212​)⋅10 Median=30\text{Median} = 30Median=30

Answer: Median = 30


3. Mode of Grouped Data

Formula

Mode=L+(f1−f02f1−f0−f2)⋅h\text{Mode} = L + \left( \frac{f_1 – f_0}{2f_1 – f_0 – f_2} \right) \cdot hMode=L+(2f1​−f0​−f2​f1​−f0​​)⋅h

Where:

  • LLL = lower boundary of the modal class
  • f1f_1f1​ = frequency of the modal class
  • f0f_0f0​ = frequency of the class before the modal class
  • f2f_2f2​ = frequency of the class after the modal class
  • hhh = class width

Example

From the same data:

The highest frequency = 15 (class 30–40).
So, modal class = 30–40. L=30,  f1=15,  f0=12,  f2=10,  h=10L = 30, \; f_1 = 15, \; f_0 = 12, \; f_2 = 10, \; h = 10L=30,f1​=15,f0​=12,f2​=10,h=10 Mode=30+(15−122(15)−12−10)⋅10\text{Mode} = 30 + \left( \frac{15 – 12}{2(15) – 12 – 10} \right) \cdot 10Mode=30+(2(15)−12−1015−12​)⋅10 =30+(330−22)⋅10= 30 + \left( \frac{3}{30 – 22} \right) \cdot 10=30+(30−223​)⋅10 =30+(38)⋅10= 30 + \left( \frac{3}{8} \right) \cdot 10=30+(83​)⋅10 =30+3.75=33.75= 30 + 3.75 = 33.75=30+3.75=33.75

Answer: Mode = 33.75


Quick Recap

MeasureFormulaExample Result
Meanxˉ=a+∑fiui∑fi⋅h\bar{x} = a + \frac{\sum f_i u_i}{\sum f_i} \cdot hxˉ=a+∑fi​∑fi​ui​​⋅h28.4
MedianL+(N2−CFf)⋅hL + \left( \frac{\frac{N}{2} – CF}{f} \right) \cdot hL+(f2N​−CF​)⋅h30
ModeL+(f1−f02f1−f0−f2)⋅hL + \left( \frac{f_1 – f_0}{2f_1 – f_0 – f_2} \right) \cdot hL+(2f1​−f0​−f2​f1​−f0​​)⋅h33.75

Final Notes

  • Mean uses all values but is influenced by extreme classes.
  • Median divides the data into two equal halves and is resistant to extreme values.
  • Mode shows the most frequent class and is useful in practical life (e.g., most common shoe size).

👉 Together, they provide a complete picture of the central tendency of grouped data.

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top