Author: Rishabh Kumar (IIT + ISI | Global Math Mentor)
Published: October 2025
Category: Calculus | Integration Techniques
🔹 What Is Integration by Parts?
When differentiation involves a product rule, integration involves its reverse — and that’s exactly what integration by parts is.
It allows us to integrate the product of two functions when direct integration isn’t straightforward.
If you know how to differentiate a product: ddx(uv)=udvdx+vdudx\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}dxd(uv)=udxdv+vdxdu
Then, rearranging gives the formula for integration by parts: ∫u dv=uv−∫v du\int u \, dv = uv – \int v \, du∫udv=uv−∫vdu
🔹 The Formula
∫u dv=uv−∫v du\boxed{\int u \, dv = uv – \int v \, du}∫udv=uv−∫vdu
Here:
- uuu: the function we differentiate
- dvdvdv: the function we integrate
Choosing which term is uuu and which is dvdvdv is the art of this technique.
🔹 The LIATE Rule — How to Choose uuu
A simple memory rule helps you decide what to differentiate (uuu):
| Priority | Function Type | Example |
|---|---|---|
| 1 | Logarithmic | lnx\ln xlnx |
| 2 | Inverse Trig | tan−1x\tan^{-1}xtan−1x |
| 3 | Algebraic | x2,x,3x3x^2, x, 3x^3×2,x,3×3 |
| 4 | Trigonometric | sinx,cosx\sin x, \cos xsinx,cosx |
| 5 | Exponential | ex,axe^x, a^xex,ax |
Choose uuu according to the earliest function type appearing in this list.
🔹 Step-by-Step Example 1 — ∫xex dx\int x e^x \, dx∫xexdx
Following LIATE, u=xu = xu=x, dv=ex dxdv = e^x \, dxdv=exdx.
Differentiate and integrate: du=dx,v=exdu = dx, \quad v = e^xdu=dx,v=ex
Substitute into formula: ∫xex dx=xex−∫ex dx=ex(x−1)+C\int x e^x \, dx = x e^x – \int e^x \, dx = e^x(x – 1) + C∫xexdx=xex−∫exdx=ex(x−1)+C
✅ Result: ex(x−1)+Ce^x(x – 1) + Cex(x−1)+C
🔹 Example 2 — ∫xcosx dx\int x \cos x \, dx∫xcosxdx
Let u=xu = xu=x, dv=cosx dxdv = \cos x \, dxdv=cosxdx du=dx,v=sinxdu = dx, \quad v = \sin xdu=dx,v=sinx
Then: ∫xcosx dx=xsinx−∫sinx dx=xsinx+cosx+C\int x \cos x \, dx = x \sin x – \int \sin x \, dx = x \sin x + \cos x + C∫xcosxdx=xsinx−∫sinxdx=xsinx+cosx+C
✅ Result: xsinx+cosx+Cx \sin x + \cos x + Cxsinx+cosx+C
🔹 Example 3 — ∫lnx dx\int \ln x \, dx∫lnxdx
Even though this looks like one function, treat it as 1⋅lnx1 \cdot \ln x1⋅lnx.
Let u=lnx, dv=dxu = \ln x, \ dv = dxu=lnx, dv=dx du=1xdx, v=xdu = \frac{1}{x} dx, \ v = xdu=x1dx, v=x
Then: ∫lnx dx=xlnx−∫x⋅1xdx=xlnx−x+C\int \ln x \, dx = x \ln x – \int x \cdot \frac{1}{x} dx = x \ln x – x + C∫lnxdx=xlnx−∫x⋅x1dx=xlnx−x+C
✅ Result: x(lnx−1)+Cx(\ln x – 1) + Cx(lnx−1)+C
🔹 Example 4 — ∫exsinx dx\int e^x \sin x \, dx∫exsinxdx (Repeating Integrals)
This integral requires repeated application of the formula.
Let u=sinx, dv=exdxu = \sin x, \ dv = e^x dxu=sinx, dv=exdx. du=cosxdx, v=exdu = \cos x dx, \ v = e^xdu=cosxdx, v=ex ∫exsinxdx=exsinx−∫excosxdx\int e^x \sin x dx = e^x \sin x – \int e^x \cos x dx∫exsinxdx=exsinx−∫excosxdx
Now integrate ∫excosxdx\int e^x \cos x dx∫excosxdx by parts again: =exsinx−[excosx−∫ex(−sinx)dx]= e^x \sin x – [e^x \cos x – \int e^x (-\sin x) dx]=exsinx−[excosx−∫ex(−sinx)dx] =exsinx−excosx+∫exsinxdx= e^x \sin x – e^x \cos x + \int e^x \sin x dx=exsinx−excosx+∫exsinxdx
Now notice — the original integral appears again: I=ex(sinx−cosx)+II = e^x (\sin x – \cos x) + II=ex(sinx−cosx)+I ⇒∫exsinxdx=12ex(sinx−cosx)+C\Rightarrow \int e^x \sin x dx = \frac{1}{2} e^x (\sin x – \cos x) + C⇒∫exsinxdx=21ex(sinx−cosx)+C
✅ Result: ex2(sinx−cosx)+C\frac{e^x}{2}(\sin x – \cos x) + C2ex(sinx−cosx)+C
🔹 Common Pitfalls
- ❌ Choosing uuu and dvdvdv incorrectly — follow LIATE.
- ❌ Forgetting the minus sign in the formula.
- ❌ Not simplifying terms before applying the rule.
- ❌ Forgetting constants of integration (especially in long solutions).
🔹 Advanced Applications
Integration by Parts is the foundation for:
- Integrating products (e.g., xex,xsinxx e^x, x \sin xxex,xsinx)
- Reduction formulas (IB/A Level advanced integration)
- Deriving Laplace transforms and Fourier series
- STEP & MAT integration challenges
🌟 Why Integration by Parts Matters
It’s a simple formula that captures the duality between differentiation and integration — and teaches how structure in calculus can simplify complexity.
Every advanced integration method (from differential equations to series expansions) builds upon this idea.
📘 Learn Beyond the Formula
At Math By Rishabh, students don’t just memorize formulas — they understand where they come from and how to adapt them.
In the Mathematics Elevate Mentorship, you’ll:
✅ Learn how to select uuu intelligently,
✅ Master multi-step integrations,
✅ Develop problem intuition for IB, AP, and STEP exams.
🚀 Transform your understanding of calculus.
👉 Book your personalized mentorship session now at MathByRishabh.com


