Author: Rishabh Kumar (IIT + ISI | Global Math Mentor)**
Published: October 2025
Category: Algebra | Binomial Expansion | Advanced Topics
๐น Introduction
The Binomial Theorem is one of the most powerful results in algebra โ it expands expressions of the form (1+x)n(1 + x)^n(1+x)n for any exponent nnn.
Most students learn it for positive integers like n=3n = 3n=3 or 555, but what happens when nnn is a fraction or a negative number?
Thatโs where the general form of the binomial theorem comes in โ a key concept for advanced mathematics and series expansions.
โก๏ธ 1๏ธโฃ The Standard Binomial Theorem
For any positive integer nnn: (1+x)n=1+(n1)x+(n2)x2+โฏ+(nn)xn(1 + x)^n = 1 + \binom{n}{1}x + \binom{n}{2}x^2 + \cdots + \binom{n}{n}x^n(1+x)n=1+(1nโ)x+(2nโ)x2+โฏ+(nnโ)xn
Where the binomial coefficient is: (nr)=n!r!(nโr)!\binom{n}{r} = \frac{n!}{r!(n – r)!}(rnโ)=r!(nโr)!n!โ
This expansion has finite terms because nnn is an integer.
Example: (1+x)3=1+3x+3×2+x3(1 + x)^3 = 1 + 3x + 3x^2 + x^3(1+x)3=1+3x+3×2+x3
๐ 2๏ธโฃ Extending to Fractional or Negative Powers
When nnn is not a positive integer โ say a fraction or negative integer โ the series becomes infinite.
The formula still holds if we redefine (nr)\binom{n}{r}(rnโ) for all real (or even complex) values of nnn: (nr)=n(nโ1)(nโ2)โฏ(nโr+1)r!\boxed{\displaystyle \binom{n}{r} = \frac{n(n – 1)(n – 2)\cdots(n – r + 1)}{r!}}(rnโ)=r!n(nโ1)(nโ2)โฏ(nโr+1)โโ
This definition works for any real or fractional nnn, even if n<0n < 0n<0.
๐งฉ 3๏ธโฃ Generalized Binomial Theorem
For any real number nnn and โฃxโฃ<1|x| < 1โฃxโฃ<1: (1+x)n=1+nx+n(nโ1)2!x2+n(nโ1)(nโ2)3!x3+โฏ(1 + x)^n = 1 + nx + \frac{n(n – 1)}{2!}x^2 + \frac{n(n – 1)(n – 2)}{3!}x^3 + \cdots(1+x)n=1+nx+2!n(nโ1)โx2+3!n(nโ1)(nโ2)โx3+โฏ
This is an infinite series (convergent for โฃxโฃ<1|x| < 1โฃxโฃ<1).
๐น Example 1 โ Fractional Power
Expand (1+x)1/2(1 + x)^{1/2}(1+x)1/2 up to four terms. (1+x)1/2=1+12x+(1/2)(โ1/2)2!x2+(1/2)(โ1/2)(โ3/2)3!x3+โฏ(1 + x)^{1/2} = 1 + \frac{1}{2}x + \frac{(1/2)(-1/2)}{2!}x^2 + \frac{(1/2)(-1/2)(-3/2)}{3!}x^3 + \cdots(1+x)1/2=1+21โx+2!(1/2)(โ1/2)โx2+3!(1/2)(โ1/2)(โ3/2)โx3+โฏ
Simplify: (1+x)1/2=1+x2โx28+x316โโฏ(1 + x)^{1/2} = 1 + \frac{x}{2} – \frac{x^2}{8} + \frac{x^3}{16} – \cdots(1+x)1/2=1+2xโโ8×2โ+16×3โโโฏ
โ This gives the power series for 1+x\sqrt{1 + x}1+xโ.
๐น Example 2 โ Negative Power
Expand (1+x)โ1(1 + x)^{-1}(1+x)โ1. (1+x)โ1=1+(โ1)x+(โ1)(โ2)x22!+(โ1)(โ2)(โ3)x33!+โฏ(1 + x)^{-1} = 1 + (-1)x + (-1)(-2)\frac{x^2}{2!} + (-1)(-2)(-3)\frac{x^3}{3!} + \cdots(1+x)โ1=1+(โ1)x+(โ1)(โ2)2!x2โ+(โ1)(โ2)(โ3)3!x3โ+โฏ
Simplify: (1+x)โ1=1โx+x2โx3+x4โโฏ(1 + x)^{-1} = 1 – x + x^2 – x^3 + x^4 – \cdots(1+x)โ1=1โx+x2โx3+x4โโฏ
โ This is the geometric series with ratio โx-xโx.
๐น Example 3 โ Negative Fractional Power
Expand (1+x)โ1/2(1 + x)^{-1/2}(1+x)โ1/2 up to 4 terms. (1+x)โ1/2=1+(โ12)x+(โ12)(โ32)2!x2โ(โ12)(โ32)(โ52)3!x3+โฏ(1 + x)^{-1/2} = 1 + \left(-\frac{1}{2}\right)x + \frac{(-\frac{1}{2})(-\frac{3}{2})}{2!}x^2 – \frac{(-\frac{1}{2})(-\frac{3}{2})(-\frac{5}{2})}{3!}x^3 + \cdots(1+x)โ1/2=1+(โ21โ)x+2!(โ21โ)(โ23โ)โx2โ3!(โ21โ)(โ23โ)(โ25โ)โx3+โฏ
Simplify: (1+x)โ1/2=1โx2+3×28โ5×316+โฏ(1 + x)^{-1/2} = 1 – \frac{x}{2} + \frac{3x^2}{8} – \frac{5x^3}{16} + \cdots(1+x)โ1/2=1โ2xโ+83×2โโ165×3โ+โฏ
โ This series represents 11+x\frac{1}{\sqrt{1 + x}}1+xโ1โ.
๐ก 4๏ธโฃ Important Observations
| Case | Expansion Type | Number of Terms | Convergence |
|---|---|---|---|
| nโNn \in \mathbb{N}nโN | Standard Binomial | Finite | Always |
| nโZโn \in \mathbb{Z}^-nโZโ | Negative Integer | Infinite | ( |
| nโQn \in \mathbb{Q}nโQ | Fractional | Infinite | ( |
๐น Why โฃxโฃ<1|x| < 1โฃxโฃ<1?
Because as rโโr \to \inftyrโโ, the terms xrx^rxr get smaller only if โฃxโฃ<1|x| < 1โฃxโฃ<1.
If โฃxโฃโฅ1|x| โฅ 1โฃxโฃโฅ1, the infinite series diverges.
๐น Shortcut Expansions to Remember
| Function | Expansion (|x| < 1) |
|———–|————-|
| (1+x)โ1(1 + x)^{-1}(1+x)โ1 | 1โx+x2โx3+โฏ1 – x + x^2 – x^3 + \cdots1โx+x2โx3+โฏ |
| (1+x)โ2(1 + x)^{-2}(1+x)โ2 | 1โ2x+3×2โ4×3+โฏ1 – 2x + 3x^2 – 4x^3 + \cdots1โ2x+3×2โ4×3+โฏ |
| (1+x)1/2(1 + x)^{1/2}(1+x)1/2 | 1+x2โx28+x316โโฏ1 + \frac{x}{2} – \frac{x^2}{8} + \frac{x^3}{16} – \cdots1+2xโโ8×2โ+16×3โโโฏ |
| (1+x)โ1/2(1 + x)^{-1/2}(1+x)โ1/2 | 1โx2+3×28โ5×316+โฏ1 – \frac{x}{2} + \frac{3x^2}{8} – \frac{5x^3}{16} + \cdots1โ2xโ+83×2โโ165×3โ+โฏ |
These appear frequently in IB, A Level, and STEP questions.
๐น Quick IB-Style Application
Find the first three terms of 14โx\frac{1}{\sqrt{4 – x}}4โxโ1โ.
Rewrite: 14โx=12(1โx4)โ1/2\frac{1}{\sqrt{4 – x}} = \frac{1}{2}\left(1 – \frac{x}{4}\right)^{-1/2}4โxโ1โ=21โ(1โ4xโ)โ1/2
Let u=โx4u = -\frac{x}{4}u=โ4xโ.
Then: (1+u)โ1/2=1โ12u+38u2+โฏ(1 + u)^{-1/2} = 1 – \frac{1}{2}u + \frac{3}{8}u^2 + \cdots(1+u)โ1/2=1โ21โu+83โu2+โฏ 14โx=12(1+x8+3×2128+โฏโ)\frac{1}{\sqrt{4 – x}} = \frac{1}{2}\left(1 + \frac{x}{8} + \frac{3x^2}{128} + \cdots\right)4โxโ1โ=21โ(1+8xโ+1283×2โ+โฏ)
โ Result: 12+x16+3×2256+โฏ\frac{1}{2} + \frac{x}{16} + \frac{3x^2}{256} + \cdots21โ+16xโ+2563×2โ+โฏ
๐ 5๏ธโฃ Why This Generalization Matters
This extension allows us to:
- Expand non-integer powers in physics & calculus,
- Derive Taylor series easily,
- Handle rational exponents in approximations,
- Model real-world nonlinear phenomena mathematically.
๐ Summary Table
| Type of Power | Example | Expansion Type | Nature |
|---|---|---|---|
| Positive Integer | (1+x)3(1 + x)^3(1+x)3 | Finite | Algebraic |
| Negative Integer | (1+x)โ2(1 + x)^{-2}(1+x)โ2 | Infinite | Convergent for |
| Fractional | (1+x)1/2(1 + x)^{1/2}(1+x)1/2 | Infinite | Convergent for |
๐ Learn Beyond Formula
At Math By Rishabh, we donโt just teach expansions โ we teach why they work.
In the Mathematics Elevate Mentorship Program, youโll:
โ
Derive generalized binomial expansions from first principles,
โ
Apply them to STEP/MAT-level problems,
โ
Connect algebraic series to calculus and approximation.
๐ Learn to expand beyond limits โ literally.
๐ Book your personalized mentorship session now at MathByRishabh.com


