Author: Rishabh Kumar (IIT + ISI | Global Math Mentor)**
Published: October 2025
Category: Vectors | 3D Geometry
πΉ Introduction
In 3D geometry, lines and planes can be parallel, perpendicular, or inclined.
The angle between them helps us understand spatial orientation β vital in geometry, mechanics, and vector analysis.
Weβll learn to find:
1οΈβ£ The angle between two lines
2οΈβ£ The angle between two planes
3οΈβ£ The angle between a line and a plane
Every angle in 3D can be derived from dot products β the algebraic expression of geometry.
β‘οΈ 1οΈβ£ Angle Between Two Lines
Let two lines be: xβx1l1=yβy1m1=zβz1n1\frac{x – x_1}{l_1} = \frac{y – y_1}{m_1} = \frac{z – z_1}{n_1}l1βxβx1ββ=m1βyβy1ββ=n1βzβz1ββ
and xβx2l2=yβy2m2=zβz2n2\frac{x – x_2}{l_2} = \frac{y – y_2}{m_2} = \frac{z – z_2}{n_2}l2βxβx2ββ=m2βyβy2ββ=n2βzβz2ββ
Direction vectors: a1=(l1,m1,n1),a2=(l2,m2,n2)\mathbf{a_1} = (l_1, m_1, n_1), \quad \mathbf{a_2} = (l_2, m_2, n_2)a1β=(l1β,m1β,n1β),a2β=(l2β,m2β,n2β)
πΉ Formula
cosβ‘ΞΈ=a1β a2β£a1β£β£a2β£\boxed{\cos\theta = \frac{\mathbf{a_1}\cdot\mathbf{a_2}}{|\mathbf{a_1}||\mathbf{a_2}|}}cosΞΈ=β£a1ββ£β£a2ββ£a1ββ a2βββ
where a1β a2=l1l2+m1m2+n1n2\mathbf{a_1}\cdot\mathbf{a_2} = l_1l_2 + m_1m_2 + n_1n_2a1ββ a2β=l1βl2β+m1βm2β+n1βn2β β£a1β£=l12+m12+n12|\mathbf{a_1}| = \sqrt{l_1^2 + m_1^2 + n_1^2}β£a1ββ£=l12β+m12β+n12ββ
β Use acute angle (0Β° β€ ΞΈ β€ 90Β°) for geometry problems.
πΉ Example 1 β Angle Between Two Lines
Find the angle between x2=y3=z6\frac{x}{2} = \frac{y}{3} = \frac{z}{6}2xβ=3yβ=6zβ
and xβ11=yβ1=z+22\frac{x – 1}{1} = \frac{y}{-1} = \frac{z + 2}{2}1xβ1β=β1yβ=2z+2β a1=(2,3,6),a2=(1,β1,2)\mathbf{a_1} = (2, 3, 6), \quad \mathbf{a_2} = (1, -1, 2)a1β=(2,3,6),a2β=(1,β1,2) a1β a2=2(1)+3(β1)+6(2)=11\mathbf{a_1}\cdot\mathbf{a_2} = 2(1) + 3(-1) + 6(2) = 11a1ββ a2β=2(1)+3(β1)+6(2)=11 β£a1β£=22+32+62=7,β£a2β£=1+1+4=6|\mathbf{a_1}| = \sqrt{2^2 + 3^2 + 6^2} = 7, \quad |\mathbf{a_2}| = \sqrt{1 + 1 + 4} = \sqrt{6}β£a1ββ£=22+32+62β=7,β£a2ββ£=1+1+4β=6β cosβ‘ΞΈ=1176βΞΈ=cosβ‘β1(1176)\cos\theta = \frac{11}{7\sqrt{6}} \Rightarrow \theta = \cos^{-1}\left(\frac{11}{7\sqrt{6}}\right)cosΞΈ=76β11ββΞΈ=cosβ1(76β11β)
β Angle β 22.8Β°
πΉ Special Cases
| Condition | Meaning |
|---|---|
| a1β a2=0\mathbf{a_1}\cdot\mathbf{a_2} = 0a1ββ a2β=0 | Lines are perpendicular |
| l1l2=m1m2=n1n2\frac{l_1}{l_2} = \frac{m_1}{m_2} = \frac{n_1}{n_2}l2βl1ββ=m2βm1ββ=n2βn1ββ | Lines are parallel |
π§ 2οΈβ£ Angle Between Two Planes
Planes: a1x+b1y+c1z+d1=0a_1x + b_1y + c_1z + d_1 = 0a1βx+b1βy+c1βz+d1β=0 a2x+b2y+c2z+d2=0a_2x + b_2y + c_2z + d_2 = 0a2βx+b2βy+c2βz+d2β=0
Normal vectors: n1=(a1,b1,c1),n2=(a2,b2,c2)\mathbf{n_1} = (a_1, b_1, c_1), \quad \mathbf{n_2} = (a_2, b_2, c_2)n1β=(a1β,b1β,c1β),n2β=(a2β,b2β,c2β)
πΉ Formula
cosβ‘ΞΈ=n1β n2β£n1β£β£n2β£\boxed{\cos\theta = \frac{\mathbf{n_1}\cdot\mathbf{n_2}}{|\mathbf{n_1}||\mathbf{n_2}|}}cosΞΈ=β£n1ββ£β£n2ββ£n1ββ n2βββ n1β n2=a1a2+b1b2+c1c2\mathbf{n_1}\cdot\mathbf{n_2} = a_1a_2 + b_1b_2 + c_1c_2n1ββ n2β=a1βa2β+b1βb2β+c1βc2β
β This gives the acute angle between the planes.
πΉ Example 2 β Angle Between Two Planes
Find the angle between: 2x+yβ2z+5=0andxβy+2zβ3=02x + y – 2z + 5 = 0 \quad \text{and} \quad x – y + 2z – 3 = 02x+yβ2z+5=0andxβy+2zβ3=0 n1=(2,1,β2),n2=(1,β1,2)\mathbf{n_1} = (2, 1, -2), \quad \mathbf{n_2} = (1, -1, 2)n1β=(2,1,β2),n2β=(1,β1,2) n1β n2=2(1)+1(β1)+(β2)(2)=β3\mathbf{n_1}\cdot\mathbf{n_2} = 2(1) + 1(-1) + (-2)(2) = -3n1ββ n2β=2(1)+1(β1)+(β2)(2)=β3 β£n1β£=3,β£n2β£=6|\mathbf{n_1}| = 3, \quad |\mathbf{n_2}| = \sqrt{6}β£n1ββ£=3,β£n2ββ£=6β cosβ‘ΞΈ=β£β3β£36=16\cos\theta = \frac{|-3|}{3\sqrt{6}} = \frac{1}{\sqrt{6}}cosΞΈ=36ββ£β3β£β=6β1β
β Angle β 65.9Β°
πΉ Relation to Line of Intersection
The line of intersection of two planes lies within both planes and makes an angle equal to ΞΈ with either planeβs normal.
Planes meet along a line whose direction vector = n1Γn2\mathbf{n_1} \times \mathbf{n_2}n1βΓn2β.
π― 3οΈβ£ Angle Between a Line and a Plane
Let a line have direction vector a=(l,m,n)\mathbf{a} = (l, m, n)a=(l,m,n),
and a plane have normal vector n=(a,b,c)\mathbf{n} = (a, b, c)n=(a,b,c).
πΉ Formula
sinβ‘ΞΈ=β£aβ nβ£β£aβ£β£nβ£\boxed{\sin\theta = \frac{|\mathbf{a}\cdot\mathbf{n}|}{|\mathbf{a}||\mathbf{n}|}}sinΞΈ=β£aβ£β£nβ£β£aβ nβ£ββ
where ΞΈ = angle between the line and the plane.
β (The angle between line and normal = 90Β° β ΞΈ, hence sine instead of cosine.)
πΉ Example 3 β Line and Plane
Find the angle between the line xβ22=y+13=zβ46\frac{x – 2}{2} = \frac{y + 1}{3} = \frac{z – 4}{6}2xβ2β=3y+1β=6zβ4β
and the plane 2xβy+2z+3=02x – y + 2z + 3 = 02xβy+2z+3=0 a=(2,3,6),n=(2,β1,2)\mathbf{a} = (2, 3, 6), \quad \mathbf{n} = (2, -1, 2)a=(2,3,6),n=(2,β1,2) aβ n=2(2)+3(β1)+6(2)=13\mathbf{a}\cdot\mathbf{n} = 2(2) + 3(-1) + 6(2) = 13aβ n=2(2)+3(β1)+6(2)=13 β£aβ£=7,β£nβ£=3|\mathbf{a}| = 7, \quad |\mathbf{n}| = 3β£aβ£=7,β£nβ£=3 sinβ‘ΞΈ=1321\sin\theta = \frac{13}{21}sinΞΈ=2113β
β Angle = ΞΈ = sinβ»ΒΉ(13/21) β 38.4Β°
πΉ Special Cases
| Condition | Relationship |
|---|---|
| aβ n=0\mathbf{a}\cdot\mathbf{n} = 0aβ n=0 | Line lies in plane |
| aβ₯n\mathbf{a} \parallel \mathbf{n}aβ₯n | Line perpendicular to plane |
π§© 4οΈβ£ Summary Table
| Relationship | Formula | Type | Range |
|---|---|---|---|
| Between two lines | ( \cos\theta = \frac{\mathbf{a_1}\cdot\mathbf{a_2}}{ | \mathbf{a_1} | |
| Between two planes | ( \cos\theta = \frac{\mathbf{n_1}\cdot\mathbf{n_2}}{ | \mathbf{n_1} | |
| Between line & plane | ( \sin\theta = \frac{ | \mathbf{a}\cdot\mathbf{n} | }{ |
πΉ Common Mistakes
- β Mixing up sine vs cosine in lineβplane formula.
- β Using wrong vectors (direction vs normal).
- β Forgetting absolute value for angle magnitude.
- β Calculating obtuse instead of acute angle.
π Why It Matters
Understanding angles in 3D is fundamental for:
- Geometry of space & mechanics,
- Computer graphics & modeling,
- IB/A Level/STEP problems on direction and orientation,
- Analytic geometry derivations.
Algebraic dot products reveal spatial relationships geometrically.
π Learn Beyond Formula
At Math By Rishabh, every formula is visualized, derived, and understood intuitively.
In the Mathematics Elevate Mentorship Program, youβll:
β
Visualize 3D angles with vector logic,
β
Derive geometric results algebraically,
β
Master IB HL & A Level P4 problems conceptually.
π See space through structure.
π Book your personalized mentorship session now at MathByRishabh.com


