📊 Argand Diagram — Visualizing Complex Numbers

Author: Rishabh Kumar (IIT + ISI | Global Math Mentor)**
Published: October 2025
Category: Complex Numbers | Algebra Meets Geometry


🔹 Introduction

Complex numbers are more than just algebraic expressions — they represent points in a plane.
This geometric representation is called the Argand Diagram.

The Argand plane lets us see complex numbers — turning abstract algebra into geometry.

It’s named after Jean-Robert Argand, who first visualized complex numbers this way in the early 19th century.


🧭 1️⃣ Representing a Complex Number

A complex number z=x+iyz = x + iyz=x+iy can be represented as a point (x, y) on a coordinate plane:

  • The x-axis represents the real part (Re(z))
  • The y-axis represents the imaginary part (Im(z))

So, z=x+iy↔P(x,y)z = x + iy \quad \leftrightarrow \quad P(x, y)z=x+iy↔P(x,y)


🔹 Example

z=3+4iz = 3 + 4iz=3+4i

On the Argand diagram:

  • Move 3 units along the real axis,
  • Move 4 units up the imaginary axis,
  • Mark point P(3,4)P(3, 4)P(3,4).

The point PPP represents the complex number 3+4i3 + 4i3+4i.


🔹 Geometric Representation

(Illustration: Real axis (horizontal), imaginary axis (vertical), point P(x,y)P(x, y)P(x,y), vector OPOPOP)

Each complex number corresponds to a position vector from the origin OOO to the point P(x,y)P(x, y)P(x,y). OP→=xi+yj\overrightarrow{OP} = x\mathbf{i} + y\mathbf{j}OP=xi+yj


⚡️ 2️⃣ Modulus and Argument

The modulus and argument describe a complex number in terms of length and direction. z=x+iy⇒∣z∣=x2+y2,arg⁡(z)=tan⁡−1 ⁣(yx)z = x + iy \Rightarrow |z| = \sqrt{x^2 + y^2}, \quad \arg(z) = \tan^{-1}\!\left(\frac{y}{x}\right)z=x+iy⇒∣z∣=x2+y2​,arg(z)=tan−1(xy​)

  • ∣z∣|z|∣z∣ = distance from origin to point PPP
  • arg⁡(z)\arg(z)arg(z) = angle made by line OPOPOP with positive real axis

✅ Together, they give the polar form: z=r(cos⁡θ+isin⁡θ)z = r(\cos\theta + i\sin\theta)z=r(cosθ+isinθ)

where r=∣z∣, θ=arg⁡(z)r = |z|, \ \theta = \arg(z)r=∣z∣, θ=arg(z)


🔹 Example

z=1+i3z = 1 + i\sqrt{3}z=1+i3​ r=12+(3)2=2,θ=tan⁡−1 ⁣(31)=60°=π3r = \sqrt{1^2 + (\sqrt{3})^2} = 2, \quad \theta = \tan^{-1}\!\left(\frac{\sqrt{3}}{1}\right) = 60° = \frac{\pi}{3}r=12+(3​)2​=2,θ=tan−1(13​​)=60°=3π​ z=2(cos⁡π3+isin⁡π3)\boxed{z = 2(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3})}z=2(cos3π​+isin3π​)​


🌀 3️⃣ Operations on Argand Diagram

OperationAlgebraicGeometric Effect
Additionz1+z2z_1 + z_2z1​+z2​Vector addition (parallelogram rule)
Subtractionz1−z2z_1 – z_2z1​−z2​Vector from z2z_2z2​ to z1z_1z1​
Multiplicationz1z2=r1r2[cos⁡(θ1+θ2)+isin⁡(θ1+θ2)]z_1z_2 = r_1r_2[\cos(\theta_1+\theta_2)+i\sin(\theta_1+\theta_2)]z1​z2​=r1​r2​[cos(θ1​+θ2​)+isin(θ1​+θ2​)]Rotate by θ2\theta_2θ2​, scale by r2r_2r2​
Divisionz1z2=r1r2[cos⁡(θ1−θ2)+isin⁡(θ1−θ2)]\frac{z_1}{z_2} = \frac{r_1}{r_2}[\cos(\theta_1-\theta_2)+i\sin(\theta_1-\theta_2)]z2​z1​​=r2​r1​​[cos(θ1​−θ2​)+isin(θ1​−θ2​)]Rotate by –θ2\theta_2θ2​, shrink by 1r2\frac{1}{r_2}r2​1​
Conjugatezˉ=x−iy\bar{z} = x – iyzˉ=x−iyReflection across real axis

🔹 Example — Addition

Let z1=2+3i, z2=1+iz_1 = 2 + 3i, \ z_2 = 1 + iz1​=2+3i, z2​=1+i: z1+z2=(2+1)+(3+1)i=3+4iz_1 + z_2 = (2+1) + (3+1)i = 3 + 4iz1​+z2​=(2+1)+(3+1)i=3+4i

Graphically, z₁ + z₂ = diagonal of parallelogram with sides z1z_1z1​ and z2z_2z2​.


🔹 Example — Multiplication

Let z1=2(cos⁡30°+isin⁡30°)z_1 = 2(\cos30° + i\sin30°)z1​=2(cos30°+isin30°), z2=3(cos⁡45°+isin⁡45°)z_2 = 3(\cos45° + i\sin45°)z2​=3(cos45°+isin45°) z1z2=6(cos⁡75°+isin⁡75°)z_1z_2 = 6(\cos75° + i\sin75°)z1​z2​=6(cos75°+isin75°)

✅ Multiply moduli, add arguments → rotation by 45°, scaling by ×3.


🔺 4️⃣ Loci on Argand Diagram

Many exam problems involve loci of complex numbers satisfying given conditions.

ConditionLocus Type
(z
(z – a
arg⁡(z)=θ\arg(z) = \thetaarg(z)=θHalf-line making angle θ with real axis
ℜ(z)=c\Re(z) = cℜ(z)=cVertical line x=cx = cx=c
ℑ(z)=c\Im(z) = cℑ(z)=cHorizontal line y=cy = cy=c

🔹 Example — Circle Locus

Find the locus of points zzz satisfying ∣z−(2+i)∣=3|z – (2 + i)| = 3∣z−(2+i)∣=3.

Center = (2, 1), Radius = 3
→ Circle with center at (2, 1) and radius 3.


🔹 Example — Argument Locus

Find locus of arg⁡(z)=π4\arg(z) = \frac{\pi}{4}arg(z)=4π​.
→ Straight line through origin making angle 45° with real axis.


🎯 5️⃣ Geometric Meaning of Complex Operations

  • Multiplying by iii rotates a complex number 90° anticlockwise.
  • Multiplying by –1 reflects across origin.
  • Complex conjugation reflects across real axis.
  • Multiplying by real k > 1 scales the vector (stretch).

🔹 Example — Rotation

If z=1+iz = 1 + iz=1+i, then iz=i(1+i)=i−1=−1+iiz = i(1 + i) = i – 1 = -1 + iiz=i(1+i)=i−1=−1+i.
✅ This is a rotation of zzz by 90° anticlockwise about the origin.


🧮 6️⃣ Summary Table

ConceptAlgebraic FormGeometric Meaning
Complex numberz=x+iyz = x + iyz=x+iyPoint (x, y)
Modulus(z
Argumentarg⁡(z)=tan⁡−1(y/x)\arg(z) = \tan^{-1}(y/x)arg(z)=tan−1(y/x)Angle with real axis
Conjugatezˉ=x−iy\bar{z} = x – iyzˉ=x−iyReflection across real axis
Multiplicationz1z2z_1z_2z1​z2​Rotation + scaling
Divisionz1z2\frac{z_1}{z_2}z2​z1​​Reverse rotation + scaling
(z – a= r )
arg⁡(z)=θ\arg(z) = \thetaarg(z)=θRay / line through origin

🔹 Common Mistakes

  1. ❌ Mixing degrees and radians in arguments.
  2. ❌ Forgetting that argument can be negative.
  3. ❌ Confusing conjugate reflection (real vs imaginary axis).
  4. ❌ Ignoring quadrant when finding arg⁡(z)\arg(z)arg(z).

🌟 Why It Matters

The Argand diagram transforms complex numbers into a geometric language
connecting algebra, trigonometry, and geometry seamlessly.

It’s used to:

  • Visualize roots of unity, rotations, transformations
  • Solve loci and geometry of modulus/argument problems
  • Understand De Moivre’s theorem and Euler’s formula visually

Once you see complex numbers geometrically, you never go back to just algebra.


📘 Learn Beyond Visualization

At Math By Rishabh, complex numbers aren’t just equations — they’re geometry in motion.

In the Mathematics Elevate Mentorship Program, you’ll:
✅ Visualize algebra through geometry,
✅ Solve advanced loci & argument problems,
✅ Build intuition for STEP, IB, and A Level challenges.

🚀 Think complex — geometrically.
👉 Book your personalized mentorship session now at MathByRishabh.com

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top