⚡️ De Moivre’s Theorem — The Power of Complex Numbers

Author: Rishabh Kumar (IIT + ISI | Global Math Mentor)**
Published: October 2025
Category: Complex Numbers | Trigonometry & Geometry


🔹 Introduction

Complex numbers are not just algebraic curiosities — they form a geometric system where algebra, trigonometry, and exponential functions meet beautifully.

One result stands above the rest in uniting them: De Moivre’s Theorem.

It transforms multiplication and exponentiation in complex numbers into simple operations on angles — turning geometry into algebra.


🧭 1️⃣ Polar Form of a Complex Number

Any complex number can be written as: z=r(cos⁡θ+isin⁡θ)z = r(\cos\theta + i\sin\theta)z=r(cosθ+isinθ)

where

  • r=∣z∣=x2+y2r = |z| = \sqrt{x^2 + y^2}r=∣z∣=x2+y2​ is the modulus,
  • θ=arg⁡(z)=tan⁡−1 ⁣(yx)\theta = \arg(z) = \tan^{-1}\!\left(\frac{y}{x}\right)θ=arg(z)=tan−1(xy​) is the argument.

In Euler’s form, z=reiθ.z = re^{i\theta}.z=reiθ.


⚡️ 2️⃣ De Moivre’s Theorem

If z=r(cos⁡θ+isin⁡θ)z = r(\cos\theta + i\sin\theta)z=r(cosθ+isinθ), then for any integer nnn: zn=rn(cos⁡nθ+isin⁡nθ)\boxed{z^n = r^n(\cos n\theta + i\sin n\theta)}zn=rn(cosnθ+isinnθ)​


🔹 Proof (using induction)

Base case n = 1: true trivially.

Assume true for n = k: zk=rk(cos⁡kθ+isin⁡kθ)z^k = r^k(\cos k\theta + i\sin k\theta)zk=rk(coskθ+isinkθ)

Then zk+1=zk⋅z=rk+1 ⁣[(cos⁡kθ+isin⁡kθ)(cos⁡θ+isin⁡θ)]z^{k+1} = z^k · z = r^{k+1}\!\left[(\cos k\theta + i\sin k\theta)(\cos\theta + i\sin\theta)\right]zk+1=zk⋅z=rk+1[(coskθ+isinkθ)(cosθ+isinθ)]

Using trig identities: cos⁡(kθ+θ)+isin⁡(kθ+θ)\cos(k\theta + \theta) + i\sin(k\theta + \theta)cos(kθ+θ)+isin(kθ+θ) =cos⁡((k+1)θ)+isin⁡((k+1)θ)= \cos((k+1)\theta) + i\sin((k+1)\theta)=cos((k+1)θ)+isin((k+1)θ)

✅ Hence true for n = k + 1 → proved by induction.


🔹 Using Euler’s Form

z=reiθ⇒zn=(reiθ)n=rneinθ=rn(cos⁡nθ+isin⁡nθ)z = re^{i\theta} \Rightarrow z^n = (re^{i\theta})^n = r^n e^{in\theta} = r^n(\cos n\theta + i\sin n\theta)z=reiθ⇒zn=(reiθ)n=rneinθ=rn(cosnθ+isinnθ)

✅ Elegant one-line proof using Euler’s identity eiθ=cos⁡θ+isin⁡θ.e^{i\theta} = \cos\theta + i\sin\theta.eiθ=cosθ+isinθ.


🎯 3️⃣ Applications of De Moivre’s Theorem

✅ (1) Powers of Complex Numbers

Simplifies znz^nzn directly without repeated multiplication.

Example: (1+i)5(1 + i)^5(1+i)5 r=2, θ=45°=π4r = \sqrt{2},\ \theta = 45° = \frac{\pi}{4}r=2​, θ=45°=4π​ z5=(2)5[cos⁡(5π/4)+isin⁡(5π/4)]=42(−12−i12)=−4−4iz^5 = (\sqrt{2})^5 [\cos(5\pi/4) + i\sin(5\pi/4)] = 4\sqrt{2}(-\frac{1}{\sqrt{2}} – i\frac{1}{\sqrt{2}}) = -4 – 4iz5=(2​)5[cos(5π/4)+isin(5π/4)]=42​(−2​1​−i2​1​)=−4−4i

✅ So (1+i)5=−4−4i(1+i)^5 = -4 – 4i(1+i)5=−4−4i


✅ (2) Finding Roots of Complex Numbers

De Moivre’s theorem gives all nthn^{\text{th}}nth roots: z1/n=r1/n ⁣[cos⁡ ⁣(θ+2kπn)+isin⁡ ⁣(θ+2kπn)], k=0,1,…,n−1z^{1/n} = r^{1/n}\!\left[\cos\!\left(\frac{\theta + 2k\pi}{n}\right) + i\sin\!\left(\frac{\theta + 2k\pi}{n}\right)\right], \ k = 0,1,…,n-1z1/n=r1/n[cos(nθ+2kπ​)+isin(nθ+2kπ​)], k=0,1,…,n−1

Example: Cube roots of 1: 1, ω=−12+i32, ω2=−12−i321,\ \omega = -\tfrac{1}{2} + i\tfrac{\sqrt{3}}{2},\ \omega^2 = -\tfrac{1}{2} – i\tfrac{\sqrt{3}}{2}1, ω=−21​+i23​​, ω2=−21​−i23​​

✅ Form equilateral triangle on Argand plane.


✅ (3) Trigonometric Identities

Using (cos⁡θ+isin⁡θ)n=cos⁡nθ+isin⁡nθ(\cos\theta + i\sin\theta)^n = \cos n\theta + i\sin n\theta(cosθ+isinθ)n=cosnθ+isinnθ,
equating real and imaginary parts gives: cos⁡nθ=ℜ[(cos⁡θ+isin⁡θ)n]\cos n\theta = \Re[(\cos\theta + i\sin\theta)^n]cosnθ=ℜ[(cosθ+isinθ)n] sin⁡nθ=ℑ[(cos⁡θ+isin⁡θ)n]\sin n\theta = \Im[(\cos\theta + i\sin\theta)^n]sinnθ=ℑ[(cosθ+isinθ)n]

✅ Generates multiple-angle and reduction formulas.


✅ (4) Geometric Interpretation

Each power of zzz multiplies the modulus and rotates the angle.

  • r→rnr → r^nr→rn: scaling
  • θ→nθ\theta → n\thetaθ→nθ: rotation

Raising a complex number to a power is a rotation + scaling transformation in the Argand plane.


🧩 4️⃣ Example Set

ExampleInputResult
(1−i)4(1 – i)^4(1−i)4r=√2, θ=−45°r=√2,\ θ=−45°r=√2, θ=−45°(√2)4(cos⁡−180°+isin⁡−180°)=4(−1)=−4(√2)^4(\cos −180° + i\sin −180°) = 4(−1) = −4(√2)4(cos−180°+isin−180°)=4(−1)=−4
(i)6(i)^6(i)6r=1, θ=90°r=1,\ θ=90°r=1, θ=90°1×(cos⁡540°+isin⁡540°)=cos⁡180°=−11 × (\cos 540° + i\sin 540°) = \cos 180° = −11×(cos540°+isin540°)=cos180°=−1
(cos⁡20°+isin⁡20°)9(\cos 20° + i\sin 20°)^9(cos20°+isin20°)9cos⁡180°+isin⁡180°=−1\cos 180° + i\sin 180° = −1cos180°+isin180°=−1

🧮 5️⃣ Summary Table

ConceptFormulaInterpretation
Polar formz=r(cos⁡θ+isin⁡θ)z = r(\cos θ + i \sin θ)z=r(cosθ+isinθ)Position on Argand plane
De Moivre’s Theoremzn=rn(cos⁡nθ+isin⁡nθ)z^n = r^n(\cos nθ + i \sin nθ)zn=rn(cosnθ+isinnθ)Multiply modulus, rotate angle
Roots formulazk=r1/n[cos⁡((θ+2kπ)/n)+isin⁡((θ+2kπ)/n)]z_k = r^{1/n}[\cos((θ + 2kπ)/n) + i\sin((θ + 2kπ)/n)]zk​=r1/n[cos((θ+2kπ)/n)+isin((θ+2kπ)/n)]n equally spaced roots
Geometric effectScaling + rotationTransformation in plane

🔹 Common Mistakes

  1. ❌ Forgetting that θ is in radians when using π.
  2. ❌ Ignoring the 2kπ2kπ2kπ term → missing other roots.
  3. ❌ Not taking the principal argument in (–π, π].
  4. ❌ Sign errors in sin/cos for quadrant angles.

🌟 Why It Matters

De Moivre’s Theorem is the foundation for:

  • Roots of unity and factorization of polynomials
  • Trigonometric identity derivations
  • Complex exponentials in physics and signals
  • STEP/MAT geometry and rotation questions

It shows how raising a number to a power creates perfect symmetry in the Argand plane.


📘 Learn Beyond Formula

At Math By Rishabh, you learn why De Moivre’s Theorem works — not just how to apply it.

In the Mathematics Elevate Mentorship Program, you’ll:
✅ Visualize complex powers as rotations,
✅ Derive identities from first principles,
✅ Master IB HL / A Level / STEP complex geometry.

🚀 See complex numbers as geometry in motion.
👉 Book your personalized mentorship session now at MathByRishabh.com

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top