✨ Roots of a Complex Number — Geometry in the Argand Plane

Author: Rishabh Kumar (IIT + ISI | Global Math Mentor)**
Published: October 2025
Category: Complex Numbers | Algebra & Geometry


🔹 Introduction

Complex numbers connect algebra and geometry like nothing else in mathematics.

Every complex number can be represented as a point or a vector on the Argand plane, and taking roots of complex numbers reveals beautiful symmetric patternsperfect polygons centered at the origin.

Finding roots of a complex number means finding all complex numbers that, when raised to a power, give the original number.


⚡️ 1️⃣ Polar Form of a Complex Number

Every complex number can be expressed as: z=r(cos⁡θ+isin⁡θ)z = r(\cos\theta + i\sin\theta)z=r(cosθ+isinθ)

or, using Euler’s form, z=reiθz = re^{i\theta}z=reiθ

where

  • r=∣z∣=x2+y2r = |z| = \sqrt{x^2 + y^2}r=∣z∣=x2+y2​ (modulus)
  • θ=arg⁡(z)=tan⁡−1(yx)\theta = \arg(z) = \tan^{-1}\left(\frac{y}{x}\right)θ=arg(z)=tan−1(xy​) (argument)

🔹 Example

If z=1+i3z = 1 + i\sqrt{3}z=1+i3​, r=12+(3)2=2,θ=tan⁡−1(31)=π3r = \sqrt{1^2 + (\sqrt{3})^2} = 2, \quad \theta = \tan^{-1}\left(\frac{\sqrt{3}}{1}\right) = \frac{\pi}{3}r=12+(3​)2​=2,θ=tan−1(13​​)=3π​

So, z=2(cos⁡π3+isin⁡π3)z = 2(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3})z=2(cos3π​+isin3π​)


🧭 2️⃣ De Moivre’s Theorem

For any complex number z=r(cos⁡θ+isin⁡θ)z = r(\cos\theta + i\sin\theta)z=r(cosθ+isinθ) and integer nnn: zn=rn(cos⁡nθ+isin⁡nθ)z^n = r^n (\cos n\theta + i\sin n\theta)zn=rn(cosnθ+isinnθ)

✅ This allows us to find powers and roots easily in polar form.


🎯 3️⃣ The nnnth Roots of a Complex Number

If z=r(cos⁡θ+isin⁡θ)z = r(\cos\theta + i\sin\theta)z=r(cosθ+isinθ),
then all the nnnth roots of z are given by: zk=r1/n[cos⁡(θ+2kπn)+isin⁡(θ+2kπn)],k=0,1,2,…,n−1\boxed{z_k = r^{1/n} \left[\cos\left(\frac{\theta + 2k\pi}{n}\right) + i\sin\left(\frac{\theta + 2k\pi}{n}\right)\right]}, \quad k = 0, 1, 2, \ldots, n-1zk​=r1/n[cos(nθ+2kπ​)+isin(nθ+2kπ​)]​,k=0,1,2,…,n−1


🔹 Key Ideas

✅ There are exactly nnn distinct nnnth roots of any nonzero complex number.
✅ Their moduli are equal (r1/nr^{1/n}r1/n).
✅ Their arguments are equally spaced by 2πn\frac{2\pi}{n}n2π​.
✅ Geometrically, they form the vertices of a regular n-sided polygon on the Argand plane, centered at the origin.


🔹 Example 1 — Cube Roots of Unity

Find all cube roots of 1.

We can write: 1=1(cos⁡0+isin⁡0)1 = 1(\cos 0 + i\sin 0)1=1(cos0+isin0)

Using the formula: zk=cos⁡(0+2kπ3)+isin⁡(0+2kπ3),k=0,1,2z_k = \cos\left(\frac{0 + 2k\pi}{3}\right) + i\sin\left(\frac{0 + 2k\pi}{3}\right), \quad k=0,1,2zk​=cos(30+2kπ​)+isin(30+2kπ​),k=0,1,2 z0=1,z1=cos⁡2π3+isin⁡2π3=−12+i32,z2=−12−i32z_0 = 1, \quad z_1 = \cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3} = -\frac{1}{2} + i\frac{\sqrt{3}}{2}, \quad z_2 = -\frac{1}{2} – i\frac{\sqrt{3}}{2}z0​=1,z1​=cos32π​+isin32π​=−21​+i23​​,z2​=−21​−i23​​

✅ The cube roots of unity are: 1,ω=−12+i32,ω2=−12−i32\boxed{1, \quad \omega = -\frac{1}{2} + i\frac{\sqrt{3}}{2}, \quad \omega^2 = -\frac{1}{2} – i\frac{\sqrt{3}}{2}}1,ω=−21​+i23​​,ω2=−21​−i23​​​

and satisfy 1+ω+ω2=01 + \omega + \omega^2 = 01+ω+ω2=0.


🔹 Example 2 — Square Roots of iii

Let z=i=cos⁡π2+isin⁡π2z = i = \cos\frac{\pi}{2} + i\sin\frac{\pi}{2}z=i=cos2π​+isin2π​

We want zk=iz_k = \sqrt{i}zk​=i​, i.e., n=2n = 2n=2. zk=(cos⁡π/2+2kπ2+isin⁡π/2+2kπ2),k=0,1z_k = (\cos\frac{\pi/2 + 2k\pi}{2} + i\sin\frac{\pi/2 + 2k\pi}{2}), \quad k = 0, 1zk​=(cos2π/2+2kπ​+isin2π/2+2kπ​),k=0,1 z0=cos⁡π4+isin⁡π4=1+i2z_0 = \cos\frac{\pi}{4} + i\sin\frac{\pi}{4} = \frac{1 + i}{\sqrt{2}}z0​=cos4π​+isin4π​=2​1+i​ z1=cos⁡5π4+isin⁡5π4=−1−i2z_1 = \cos\frac{5\pi}{4} + i\sin\frac{5\pi}{4} = \frac{-1 – i}{\sqrt{2}}z1​=cos45π​+isin45π​=2​−1−i​

✅ The two square roots of iii are: 1+i2, −1−i2\boxed{\frac{1 + i}{\sqrt{2}}, \ \frac{-1 – i}{\sqrt{2}}}2​1+i​, 2​−1−i​​


🔹 Example 3 — Cube Roots of 8(cos⁡60°+isin⁡60°)8(\cos 60° + i\sin 60°)8(cos60°+isin60°)

Here r=8r = 8r=8, θ=60°=π3\theta = 60° = \frac{\pi}{3}θ=60°=3π​, n=3n = 3n=3. zk=81/3[cos⁡(π/3+2kπ3)+isin⁡(π/3+2kπ3)]z_k = 8^{1/3}\left[\cos\left(\frac{\pi/3 + 2k\pi}{3}\right) + i\sin\left(\frac{\pi/3 + 2k\pi}{3}\right)\right]zk​=81/3[cos(3π/3+2kπ​)+isin(3π/3+2kπ​)] r1/3=2r^{1/3} = 2r1/3=2

So: z0=2(cos⁡π9+isin⁡π9)z_0 = 2(\cos\frac{\pi}{9} + i\sin\frac{\pi}{9})z0​=2(cos9π​+isin9π​) z1=2(cos⁡7π9+isin⁡7π9)z_1 = 2(\cos\frac{7\pi}{9} + i\sin\frac{7\pi}{9})z1​=2(cos97π​+isin97π​) z2=2(cos⁡13π9+isin⁡13π9)z_2 = 2(\cos\frac{13\pi}{9} + i\sin\frac{13\pi}{9})z2​=2(cos913π​+isin913π​)

✅ These 3 points form an equilateral triangle centered at the origin.


🌀 4️⃣ Geometric Interpretation

(Illustrate equal-radius points equally spaced around the origin.)

  • All roots lie on a circle of radius r1/nr^{1/n}r1/n.
  • They are symmetrically spaced by 2πn\frac{2\pi}{n}n2π​.
  • The first root corresponds to the principal argument; others are obtained by successive rotations.

Complex roots don’t just exist — they form patterns of perfect symmetry.


🧮 5️⃣ Summary Table

TypeExpressionRoots CountGeometry
General nth rootr1/n[cos⁡(θ+2kπn)+isin⁡(θ+2kπn)]r^{1/n}[\cos(\frac{\theta + 2k\pi}{n}) + i\sin(\frac{\theta + 2k\pi}{n})]r1/n[cos(nθ+2kπ​)+isin(nθ+2kπ​)]nnnRegular n-gon
Cube roots of unity1,ω,ω21, \omega, \omega^21,ω,ω23Equilateral triangle
Square roots of i1+i2,−1−i2\frac{1+i}{\sqrt{2}}, \frac{-1-i}{\sqrt{2}}2​1+i​,2​−1−i​2Opposite points on circle
nth roots of real negative numberLie symmetrically about real axisnnnSymmetric pairings

🔹 Common Mistakes

  1. ❌ Forgetting the 2kπ2k\pi2kπ term → only one root found.
  2. ❌ Using degrees and radians inconsistently.
  3. ❌ Not checking for distinct arguments within 2π2\pi2π.
  4. ❌ Forgetting geometric meaning (modulus and equal spacing).

🌟 Why It Matters

The concept of complex roots appears in:

  • De Moivre’s theorem, Euler’s formula,
  • Polynomials and roots of unity,
  • Trigonometric identities,
  • Physics & signal processing (phasors, waves),
  • STEP/MAT problems involving loci and geometry in the Argand plane.

The roots of a complex number are not random — they form perfect geometric harmony.


📘 Learn Beyond the Formula

At Math By Rishabh, you learn the geometry of algebra.

In the Mathematics Elevate Mentorship Program, you’ll:
✅ Derive complex results visually,
✅ Master De Moivre’s theorem intuitively,
✅ Solve STEP/MAT-level problems on loci and symmetry.

🚀 Visualize the Argand plane like never before.
👉 Book your personalized mentorship session now at MathByRishabh.com

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top