๐Ÿ“˜ Vector Equation of a Line and a Plane โ€” The Language of 3D Geometry

Author: Rishabh Kumar (IIT + ISI | Global Math Mentor)**
Published: October 2025
Category: Vectors | 3D Geometry


๐Ÿ”น Introduction

In 3D geometry, lines and planes are the building blocks of space.
Their equations in vector form provide an elegant, coordinate-free way to represent direction, position, and geometry.

Every line is defined by a point and a direction,
and every plane by a point and a normal.

Once you understand their vector equations, all 3D concepts โ€” intersection, distance, and angle โ€” become simple logical extensions.


๐Ÿงญ 1๏ธโƒฃ Vector Equation of a Line

A line in 3D space can be defined if we know:

  • A point A through which it passes (position vector a)
  • A direction vector b that gives its orientation

๐Ÿ”น Vector Form

r=a+ฮปb\boxed{\mathbf{r} = \mathbf{a} + \lambda\mathbf{b}}r=a+ฮปbโ€‹

where:

  • r\mathbf{r}r โ†’ position vector of any general point P(x,y,z)P(x, y, z)P(x,y,z) on the line
  • a\mathbf{a}a โ†’ position vector of a fixed point on the line
  • b\mathbf{b}b โ†’ direction vector of the line
  • ฮปโˆˆR\lambda \in \mathbb{R}ฮปโˆˆR โ†’ parameter that varies along the line

โœ… As ฮป changes, r\mathbf{r}r traces the entire line.


๐Ÿ”น Geometric Meaning

(Illustrate a line passing through A with direction vector b and a variable point P on it.)

The line passes through A and moves along b.
When ฮป = 0 โ†’ point = A; when ฮป = 1 โ†’ point = A + b, etc.


๐Ÿ”น Cartesian Form

If a=(x1,y1,z1)\mathbf{a} = (x_1, y_1, z_1)a=(x1โ€‹,y1โ€‹,z1โ€‹) and b=(l,m,n)\mathbf{b} = (l, m, n)b=(l,m,n): r=(x1i+y1j+z1k)+ฮป(li+mj+nk)\mathbf{r} = (x_1\mathbf{i} + y_1\mathbf{j} + z_1\mathbf{k}) + \lambda(l\mathbf{i} + m\mathbf{j} + n\mathbf{k})r=(x1โ€‹i+y1โ€‹j+z1โ€‹k)+ฮป(li+mj+nk) โ‡’xโˆ’x1l=yโˆ’y1m=zโˆ’z1n\Rightarrow \frac{x – x_1}{l} = \frac{y – y_1}{m} = \frac{z – z_1}{n}โ‡’lxโˆ’x1โ€‹โ€‹=myโˆ’y1โ€‹โ€‹=nzโˆ’z1โ€‹โ€‹

โœ… This is the symmetric (Cartesian) form of a line.


๐Ÿ”น Example 1 โ€” Equation of a Line

Find the vector and Cartesian equation of the line passing through A(2,โˆ’1,3)A(2, -1, 3)A(2,โˆ’1,3) and parallel to vector 3iโˆ’2j+6k3\mathbf{i} – 2\mathbf{j} + 6\mathbf{k}3iโˆ’2j+6k.

Solution: a=2iโˆ’j+3k,b=3iโˆ’2j+6k\mathbf{a} = 2\mathbf{i} – \mathbf{j} + 3\mathbf{k}, \quad \mathbf{b} = 3\mathbf{i} – 2\mathbf{j} + 6\mathbf{k}a=2iโˆ’j+3k,b=3iโˆ’2j+6k r=(2iโˆ’j+3k)+ฮป(3iโˆ’2j+6k)\boxed{\mathbf{r} = (2\mathbf{i} – \mathbf{j} + 3\mathbf{k}) + \lambda(3\mathbf{i} – 2\mathbf{j} + 6\mathbf{k})}r=(2iโˆ’j+3k)+ฮป(3iโˆ’2j+6k)โ€‹

Cartesian form: xโˆ’23=y+1โˆ’2=zโˆ’36\frac{x – 2}{3} = \frac{y + 1}{-2} = \frac{z – 3}{6}3xโˆ’2โ€‹=โˆ’2y+1โ€‹=6zโˆ’3โ€‹

โœ… Equation represents a line through (2, โˆ’1, 3) parallel to (3, โˆ’2, 6).


๐Ÿงฎ 2๏ธโƒฃ Vector Equation of a Plane

A plane in space can be defined by:

  • A point A with position vector a\mathbf{a}a, and
  • A normal vector n=(a,b,c)\mathbf{n} = (a, b, c)n=(a,b,c), perpendicular to the plane.

๐Ÿ”น Vector Form

rโ‹…n=aโ‹…n\boxed{\mathbf{r} \cdot \mathbf{n} = \mathbf{a} \cdot \mathbf{n}}rโ‹…n=aโ‹…nโ€‹

where:

  • r=xi+yj+zk\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}r=xi+yj+zk โ†’ position vector of a general point P(x,y,z)P(x, y, z)P(x,y,z) on the plane
  • a\mathbf{a}a โ†’ position vector of known point A(x1,y1,z1)A(x_1, y_1, z_1)A(x1โ€‹,y1โ€‹,z1โ€‹)
  • n\mathbf{n}n โ†’ normal vector to plane

โœ… The dot product ensures that rโˆ’a\mathbf{r} – \mathbf{a}rโˆ’a is perpendicular to the normal vector.


๐Ÿ”น Cartesian Form

If n=(a,b,c)\mathbf{n} = (a, b, c)n=(a,b,c), and a=(x1,y1,z1)\mathbf{a} = (x_1, y_1, z_1)a=(x1โ€‹,y1โ€‹,z1โ€‹): a(xโˆ’x1)+b(yโˆ’y1)+c(zโˆ’z1)=0a(x – x_1) + b(y – y_1) + c(z – z_1) = 0a(xโˆ’x1โ€‹)+b(yโˆ’y1โ€‹)+c(zโˆ’z1โ€‹)=0

Simplify: ax+by+cz+d=0,where d=โˆ’(ax1+by1+cz1)\boxed{ax + by + cz + d = 0}, \quad \text{where } d = -(ax_1 + by_1 + cz_1)ax+by+cz+d=0โ€‹,where d=โˆ’(ax1โ€‹+by1โ€‹+cz1โ€‹)

โœ… This is the Cartesian form of the plane equation.


๐Ÿ”น Example 2 โ€” Equation of a Plane

Find the equation of a plane passing through (2,3,4)(2, 3, 4)(2,3,4) and perpendicular to 3iโˆ’2j+6k3\mathbf{i} – 2\mathbf{j} + 6\mathbf{k}3iโˆ’2j+6k. a=2i+3j+4k,n=3iโˆ’2j+6k\mathbf{a} = 2\mathbf{i} + 3\mathbf{j} + 4\mathbf{k}, \quad \mathbf{n} = 3\mathbf{i} – 2\mathbf{j} + 6\mathbf{k}a=2i+3j+4k,n=3iโˆ’2j+6k

Vector form: rโ‹…(3iโˆ’2j+6k)=(2i+3j+4k)โ‹…(3iโˆ’2j+6k)\mathbf{r} \cdot (3\mathbf{i} – 2\mathbf{j} + 6\mathbf{k}) = (2\mathbf{i} + 3\mathbf{j} + 4\mathbf{k}) \cdot (3\mathbf{i} – 2\mathbf{j} + 6\mathbf{k})rโ‹…(3iโˆ’2j+6k)=(2i+3j+4k)โ‹…(3iโˆ’2j+6k) โ‡’rโ‹…(3,โˆ’2,6)=24\Rightarrow \mathbf{r} \cdot (3, -2, 6) = 24โ‡’rโ‹…(3,โˆ’2,6)=24

Cartesian form: 3xโˆ’2y+6z=243x – 2y + 6z = 243xโˆ’2y+6z=24

โœ… Plane Equation: 3xโˆ’2y+6zโˆ’24=03x – 2y + 6z – 24 = 03xโˆ’2y+6zโˆ’24=0


๐Ÿ”น Example 3 โ€” Plane Through 3 Points

Find equation of the plane passing through
A(1,2,3),B(2,โˆ’1,1),C(3,1,4)A(1, 2, 3), B(2, -1, 1), C(3, 1, 4)A(1,2,3),B(2,โˆ’1,1),C(3,1,4).

1๏ธโƒฃ Find vectors AB and AC: AB=(1,โˆ’3,โˆ’2),AC=(2,โˆ’1,1)\mathbf{AB} = (1, -3, -2), \quad \mathbf{AC} = (2, -1, 1)AB=(1,โˆ’3,โˆ’2),AC=(2,โˆ’1,1)

2๏ธโƒฃ Normal to plane = ABร—AC\mathbf{AB} \times \mathbf{AC}ABร—AC n=โˆฃijk1โˆ’3โˆ’22โˆ’11โˆฃ=(โˆ’5,โˆ’4,5)\mathbf{n} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & -3 & -2 \\ 2 & -1 & 1 \end{vmatrix} = (-5, -4, 5)n=โ€‹i12โ€‹jโˆ’3โˆ’1โ€‹kโˆ’21โ€‹โ€‹=(โˆ’5,โˆ’4,5)

3๏ธโƒฃ Equation: rโ‹…(โˆ’5iโˆ’4j+5k)=(1,2,3)โ‹…(โˆ’5,โˆ’4,5)\mathbf{r} \cdot (-5\mathbf{i} – 4\mathbf{j} + 5\mathbf{k}) = (1, 2, 3) \cdot (-5, -4, 5)rโ‹…(โˆ’5iโˆ’4j+5k)=(1,2,3)โ‹…(โˆ’5,โˆ’4,5) โ‡’โˆ’5xโˆ’4y+5z=โˆ’5โˆ’8+15=2\Rightarrow -5x – 4y + 5z = -5 – 8 + 15 = 2โ‡’โˆ’5xโˆ’4y+5z=โˆ’5โˆ’8+15=2

โœ… Simplified Cartesian form: 5x+4yโˆ’5z+2=05x + 4y – 5z + 2 = 05x+4yโˆ’5z+2=0


๐ŸŽฏ 3๏ธโƒฃ Relation Between Line and Plane Equations

ConceptLinePlane
Defining InfoA point + directionA point + normal
Vector Equationr=a+ฮปb\mathbf{r} = \mathbf{a} + \lambda\mathbf{b}r=a+ฮปbrโ‹…n=aโ‹…n\mathbf{r}\cdot\mathbf{n} = \mathbf{a}\cdot\mathbf{n}rโ‹…n=aโ‹…n
Cartesian Formxโˆ’x1l=yโˆ’y1m=zโˆ’z1n\frac{x-x_1}{l} = \frac{y-y_1}{m} = \frac{z-z_1}{n}lxโˆ’x1โ€‹โ€‹=myโˆ’y1โ€‹โ€‹=nzโˆ’z1โ€‹โ€‹ax+by+cz+d=0ax + by + cz + d = 0ax+by+cz+d=0
Orientation VectorDirection vector bNormal vector n
Degrees of Freedom1 (line)2 (plane)

๐Ÿ”น Common Mistakes

  1. โŒ Confusing normal and direction vectors.
  2. โŒ Forgetting that planeโ€™s vector form uses dot product.
  3. โŒ Missing parameter ฮป in line equation.
  4. โŒ Wrong sign of constant d in Cartesian plane equation.

๐ŸŒŸ Why It Matters

Understanding vector equations lets you:

  • Find intersections of lines and planes,
  • Compute angles and distances,
  • Model 3D geometry in mechanics and physics,
  • Solve IB HL & A Level P4 vector geometry problems intuitively.

The power of vector equations lies in their simplicity โ€”
one formula represents infinitely many points and directions.


๐Ÿ“˜ Learn Beyond the Formula

At Math By Rishabh, we donโ€™t just memorize equations โ€” we build 3D reasoning skills.

In the Mathematics Elevate Mentorship Program, youโ€™ll:
โœ… Derive vector results geometrically,
โœ… Visualize 3D objects through algebra,
โœ… Solve real IB/A Level/STEP vector problems intuitively.

๐Ÿš€ Think in 3D โ€” not just calculate in 2D.
๐Ÿ‘‰ Book your personalized mentorship session now at MathByRishabh.com

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top