Author: Rishabh Kumar (IIT + ISI | Global Math Mentor)**
Published: October 2025
Category: Vectors | 3D Geometry
🔹 Introduction
In 3D geometry, lines and planes can be parallel, perpendicular, or inclined.
The angle between them helps us understand spatial orientation — vital in geometry, mechanics, and vector analysis.
We’ll learn to find:
1️⃣ The angle between two lines
2️⃣ The angle between two planes
3️⃣ The angle between a line and a plane
Every angle in 3D can be derived from dot products — the algebraic expression of geometry.
⚡️ 1️⃣ Angle Between Two Lines
Let two lines be: x−x1l1=y−y1m1=z−z1n1\frac{x – x_1}{l_1} = \frac{y – y_1}{m_1} = \frac{z – z_1}{n_1}l1x−x1=m1y−y1=n1z−z1
and x−x2l2=y−y2m2=z−z2n2\frac{x – x_2}{l_2} = \frac{y – y_2}{m_2} = \frac{z – z_2}{n_2}l2x−x2=m2y−y2=n2z−z2
Direction vectors: a1=(l1,m1,n1),a2=(l2,m2,n2)\mathbf{a_1} = (l_1, m_1, n_1), \quad \mathbf{a_2} = (l_2, m_2, n_2)a1=(l1,m1,n1),a2=(l2,m2,n2)
🔹 Formula
cosθ=a1⋅a2∣a1∣∣a2∣\boxed{\cos\theta = \frac{\mathbf{a_1}\cdot\mathbf{a_2}}{|\mathbf{a_1}||\mathbf{a_2}|}}cosθ=∣a1∣∣a2∣a1⋅a2
where a1⋅a2=l1l2+m1m2+n1n2\mathbf{a_1}\cdot\mathbf{a_2} = l_1l_2 + m_1m_2 + n_1n_2a1⋅a2=l1l2+m1m2+n1n2 ∣a1∣=l12+m12+n12|\mathbf{a_1}| = \sqrt{l_1^2 + m_1^2 + n_1^2}∣a1∣=l12+m12+n12
✅ Use acute angle (0° ≤ θ ≤ 90°) for geometry problems.
🔹 Example 1 — Angle Between Two Lines
Find the angle between x2=y3=z6\frac{x}{2} = \frac{y}{3} = \frac{z}{6}2x=3y=6z
and x−11=y−1=z+22\frac{x – 1}{1} = \frac{y}{-1} = \frac{z + 2}{2}1x−1=−1y=2z+2 a1=(2,3,6),a2=(1,−1,2)\mathbf{a_1} = (2, 3, 6), \quad \mathbf{a_2} = (1, -1, 2)a1=(2,3,6),a2=(1,−1,2) a1⋅a2=2(1)+3(−1)+6(2)=11\mathbf{a_1}\cdot\mathbf{a_2} = 2(1) + 3(-1) + 6(2) = 11a1⋅a2=2(1)+3(−1)+6(2)=11 ∣a1∣=22+32+62=7,∣a2∣=1+1+4=6|\mathbf{a_1}| = \sqrt{2^2 + 3^2 + 6^2} = 7, \quad |\mathbf{a_2}| = \sqrt{1 + 1 + 4} = \sqrt{6}∣a1∣=22+32+62=7,∣a2∣=1+1+4=6 cosθ=1176⇒θ=cos−1(1176)\cos\theta = \frac{11}{7\sqrt{6}} \Rightarrow \theta = \cos^{-1}\left(\frac{11}{7\sqrt{6}}\right)cosθ=7611⇒θ=cos−1(7611)
✅ Angle ≈ 22.8°
🔹 Special Cases
| Condition | Meaning |
|---|---|
| a1⋅a2=0\mathbf{a_1}\cdot\mathbf{a_2} = 0a1⋅a2=0 | Lines are perpendicular |
| l1l2=m1m2=n1n2\frac{l_1}{l_2} = \frac{m_1}{m_2} = \frac{n_1}{n_2}l2l1=m2m1=n2n1 | Lines are parallel |
🧭 2️⃣ Angle Between Two Planes
Planes: a1x+b1y+c1z+d1=0a_1x + b_1y + c_1z + d_1 = 0a1x+b1y+c1z+d1=0 a2x+b2y+c2z+d2=0a_2x + b_2y + c_2z + d_2 = 0a2x+b2y+c2z+d2=0
Normal vectors: n1=(a1,b1,c1),n2=(a2,b2,c2)\mathbf{n_1} = (a_1, b_1, c_1), \quad \mathbf{n_2} = (a_2, b_2, c_2)n1=(a1,b1,c1),n2=(a2,b2,c2)
🔹 Formula
cosθ=n1⋅n2∣n1∣∣n2∣\boxed{\cos\theta = \frac{\mathbf{n_1}\cdot\mathbf{n_2}}{|\mathbf{n_1}||\mathbf{n_2}|}}cosθ=∣n1∣∣n2∣n1⋅n2 n1⋅n2=a1a2+b1b2+c1c2\mathbf{n_1}\cdot\mathbf{n_2} = a_1a_2 + b_1b_2 + c_1c_2n1⋅n2=a1a2+b1b2+c1c2
✅ This gives the acute angle between the planes.
🔹 Example 2 — Angle Between Two Planes
Find the angle between: 2x+y−2z+5=0andx−y+2z−3=02x + y – 2z + 5 = 0 \quad \text{and} \quad x – y + 2z – 3 = 02x+y−2z+5=0andx−y+2z−3=0 n1=(2,1,−2),n2=(1,−1,2)\mathbf{n_1} = (2, 1, -2), \quad \mathbf{n_2} = (1, -1, 2)n1=(2,1,−2),n2=(1,−1,2) n1⋅n2=2(1)+1(−1)+(−2)(2)=−3\mathbf{n_1}\cdot\mathbf{n_2} = 2(1) + 1(-1) + (-2)(2) = -3n1⋅n2=2(1)+1(−1)+(−2)(2)=−3 ∣n1∣=3,∣n2∣=6|\mathbf{n_1}| = 3, \quad |\mathbf{n_2}| = \sqrt{6}∣n1∣=3,∣n2∣=6 cosθ=∣−3∣36=16\cos\theta = \frac{|-3|}{3\sqrt{6}} = \frac{1}{\sqrt{6}}cosθ=36∣−3∣=61
✅ Angle ≈ 65.9°
🔹 Relation to Line of Intersection
The line of intersection of two planes lies within both planes and makes an angle equal to θ with either plane’s normal.
Planes meet along a line whose direction vector = n1×n2\mathbf{n_1} \times \mathbf{n_2}n1×n2.
🎯 3️⃣ Angle Between a Line and a Plane
Let a line have direction vector a=(l,m,n)\mathbf{a} = (l, m, n)a=(l,m,n),
and a plane have normal vector n=(a,b,c)\mathbf{n} = (a, b, c)n=(a,b,c).
🔹 Formula
sinθ=∣a⋅n∣∣a∣∣n∣\boxed{\sin\theta = \frac{|\mathbf{a}\cdot\mathbf{n}|}{|\mathbf{a}||\mathbf{n}|}}sinθ=∣a∣∣n∣∣a⋅n∣
where θ = angle between the line and the plane.
✅ (The angle between line and normal = 90° − θ, hence sine instead of cosine.)
🔹 Example 3 — Line and Plane
Find the angle between the line x−22=y+13=z−46\frac{x – 2}{2} = \frac{y + 1}{3} = \frac{z – 4}{6}2x−2=3y+1=6z−4
and the plane 2x−y+2z+3=02x – y + 2z + 3 = 02x−y+2z+3=0 a=(2,3,6),n=(2,−1,2)\mathbf{a} = (2, 3, 6), \quad \mathbf{n} = (2, -1, 2)a=(2,3,6),n=(2,−1,2) a⋅n=2(2)+3(−1)+6(2)=13\mathbf{a}\cdot\mathbf{n} = 2(2) + 3(-1) + 6(2) = 13a⋅n=2(2)+3(−1)+6(2)=13 ∣a∣=7,∣n∣=3|\mathbf{a}| = 7, \quad |\mathbf{n}| = 3∣a∣=7,∣n∣=3 sinθ=1321\sin\theta = \frac{13}{21}sinθ=2113
✅ Angle = θ = sin⁻¹(13/21) ≈ 38.4°
🔹 Special Cases
| Condition | Relationship |
|---|---|
| a⋅n=0\mathbf{a}\cdot\mathbf{n} = 0a⋅n=0 | Line lies in plane |
| a∥n\mathbf{a} \parallel \mathbf{n}a∥n | Line perpendicular to plane |
🧩 4️⃣ Summary Table
| Relationship | Formula | Type | Range |
|---|---|---|---|
| Between two lines | ( \cos\theta = \frac{\mathbf{a_1}\cdot\mathbf{a_2}}{ | \mathbf{a_1} | |
| Between two planes | ( \cos\theta = \frac{\mathbf{n_1}\cdot\mathbf{n_2}}{ | \mathbf{n_1} | |
| Between line & plane | ( \sin\theta = \frac{ | \mathbf{a}\cdot\mathbf{n} | }{ |
🔹 Common Mistakes
- ❌ Mixing up sine vs cosine in line–plane formula.
- ❌ Using wrong vectors (direction vs normal).
- ❌ Forgetting absolute value for angle magnitude.
- ❌ Calculating obtuse instead of acute angle.
🌟 Why It Matters
Understanding angles in 3D is fundamental for:
- Geometry of space & mechanics,
- Computer graphics & modeling,
- IB/A Level/STEP problems on direction and orientation,
- Analytic geometry derivations.
Algebraic dot products reveal spatial relationships geometrically.
📘 Learn Beyond Formula
At Math By Rishabh, every formula is visualized, derived, and understood intuitively.
In the Mathematics Elevate Mentorship Program, you’ll:
✅ Visualize 3D angles with vector logic,
✅ Derive geometric results algebraically,
✅ Master IB HL & A Level P4 problems conceptually.
🚀 See space through structure.
👉 Book your personalized mentorship session now at MathByRishabh.com