πŸ“ Angle Between Lines and Planes β€” A Complete Vector Geometry Guide

Author: Rishabh Kumar (IIT + ISI | Global Math Mentor)**
Published: October 2025
Category: Vectors | 3D Geometry


πŸ”Ή Introduction

In 3D geometry, lines and planes can be parallel, perpendicular, or inclined.
The angle between them helps us understand spatial orientation β€” vital in geometry, mechanics, and vector analysis.

We’ll learn to find:
1️⃣ The angle between two lines
2️⃣ The angle between two planes
3️⃣ The angle between a line and a plane

Every angle in 3D can be derived from dot products β€” the algebraic expression of geometry.


⚑️ 1️⃣ Angle Between Two Lines

Let two lines be: xβˆ’x1l1=yβˆ’y1m1=zβˆ’z1n1\frac{x – x_1}{l_1} = \frac{y – y_1}{m_1} = \frac{z – z_1}{n_1}l1​xβˆ’x1​​=m1​yβˆ’y1​​=n1​zβˆ’z1​​

and xβˆ’x2l2=yβˆ’y2m2=zβˆ’z2n2\frac{x – x_2}{l_2} = \frac{y – y_2}{m_2} = \frac{z – z_2}{n_2}l2​xβˆ’x2​​=m2​yβˆ’y2​​=n2​zβˆ’z2​​

Direction vectors: a1=(l1,m1,n1),a2=(l2,m2,n2)\mathbf{a_1} = (l_1, m_1, n_1), \quad \mathbf{a_2} = (l_2, m_2, n_2)a1​=(l1​,m1​,n1​),a2​=(l2​,m2​,n2​)


πŸ”Ή Formula

cos⁑θ=a1β‹…a2∣a1∣∣a2∣\boxed{\cos\theta = \frac{\mathbf{a_1}\cdot\mathbf{a_2}}{|\mathbf{a_1}||\mathbf{a_2}|}}cosΞΈ=∣a1β€‹βˆ£βˆ£a2β€‹βˆ£a1​⋅a2​​​

where a1β‹…a2=l1l2+m1m2+n1n2\mathbf{a_1}\cdot\mathbf{a_2} = l_1l_2 + m_1m_2 + n_1n_2a1​⋅a2​=l1​l2​+m1​m2​+n1​n2​ ∣a1∣=l12+m12+n12|\mathbf{a_1}| = \sqrt{l_1^2 + m_1^2 + n_1^2}∣a1β€‹βˆ£=l12​+m12​+n12​​

βœ… Use acute angle (0Β° ≀ ΞΈ ≀ 90Β°) for geometry problems.


πŸ”Ή Example 1 β€” Angle Between Two Lines

Find the angle between x2=y3=z6\frac{x}{2} = \frac{y}{3} = \frac{z}{6}2x​=3y​=6z​

and xβˆ’11=yβˆ’1=z+22\frac{x – 1}{1} = \frac{y}{-1} = \frac{z + 2}{2}1xβˆ’1​=βˆ’1y​=2z+2​ a1=(2,3,6),a2=(1,βˆ’1,2)\mathbf{a_1} = (2, 3, 6), \quad \mathbf{a_2} = (1, -1, 2)a1​=(2,3,6),a2​=(1,βˆ’1,2) a1β‹…a2=2(1)+3(βˆ’1)+6(2)=11\mathbf{a_1}\cdot\mathbf{a_2} = 2(1) + 3(-1) + 6(2) = 11a1​⋅a2​=2(1)+3(βˆ’1)+6(2)=11 ∣a1∣=22+32+62=7,∣a2∣=1+1+4=6|\mathbf{a_1}| = \sqrt{2^2 + 3^2 + 6^2} = 7, \quad |\mathbf{a_2}| = \sqrt{1 + 1 + 4} = \sqrt{6}∣a1β€‹βˆ£=22+32+62​=7,∣a2β€‹βˆ£=1+1+4​=6​ cos⁑θ=1176β‡’ΞΈ=cosβ‘βˆ’1(1176)\cos\theta = \frac{11}{7\sqrt{6}} \Rightarrow \theta = \cos^{-1}\left(\frac{11}{7\sqrt{6}}\right)cosΞΈ=76​11​⇒θ=cosβˆ’1(76​11​)

βœ… Angle β‰ˆ 22.8Β°


πŸ”Ή Special Cases

ConditionMeaning
a1β‹…a2=0\mathbf{a_1}\cdot\mathbf{a_2} = 0a1​⋅a2​=0Lines are perpendicular
l1l2=m1m2=n1n2\frac{l_1}{l_2} = \frac{m_1}{m_2} = \frac{n_1}{n_2}l2​l1​​=m2​m1​​=n2​n1​​Lines are parallel

🧭 2️⃣ Angle Between Two Planes

Planes: a1x+b1y+c1z+d1=0a_1x + b_1y + c_1z + d_1 = 0a1​x+b1​y+c1​z+d1​=0 a2x+b2y+c2z+d2=0a_2x + b_2y + c_2z + d_2 = 0a2​x+b2​y+c2​z+d2​=0

Normal vectors: n1=(a1,b1,c1),n2=(a2,b2,c2)\mathbf{n_1} = (a_1, b_1, c_1), \quad \mathbf{n_2} = (a_2, b_2, c_2)n1​=(a1​,b1​,c1​),n2​=(a2​,b2​,c2​)


πŸ”Ή Formula

cos⁑θ=n1β‹…n2∣n1∣∣n2∣\boxed{\cos\theta = \frac{\mathbf{n_1}\cdot\mathbf{n_2}}{|\mathbf{n_1}||\mathbf{n_2}|}}cosΞΈ=∣n1β€‹βˆ£βˆ£n2β€‹βˆ£n1​⋅n2​​​ n1β‹…n2=a1a2+b1b2+c1c2\mathbf{n_1}\cdot\mathbf{n_2} = a_1a_2 + b_1b_2 + c_1c_2n1​⋅n2​=a1​a2​+b1​b2​+c1​c2​

βœ… This gives the acute angle between the planes.


πŸ”Ή Example 2 β€” Angle Between Two Planes

Find the angle between: 2x+yβˆ’2z+5=0andxβˆ’y+2zβˆ’3=02x + y – 2z + 5 = 0 \quad \text{and} \quad x – y + 2z – 3 = 02x+yβˆ’2z+5=0andxβˆ’y+2zβˆ’3=0 n1=(2,1,βˆ’2),n2=(1,βˆ’1,2)\mathbf{n_1} = (2, 1, -2), \quad \mathbf{n_2} = (1, -1, 2)n1​=(2,1,βˆ’2),n2​=(1,βˆ’1,2) n1β‹…n2=2(1)+1(βˆ’1)+(βˆ’2)(2)=βˆ’3\mathbf{n_1}\cdot\mathbf{n_2} = 2(1) + 1(-1) + (-2)(2) = -3n1​⋅n2​=2(1)+1(βˆ’1)+(βˆ’2)(2)=βˆ’3 ∣n1∣=3,∣n2∣=6|\mathbf{n_1}| = 3, \quad |\mathbf{n_2}| = \sqrt{6}∣n1β€‹βˆ£=3,∣n2β€‹βˆ£=6​ cos⁑θ=βˆ£βˆ’3∣36=16\cos\theta = \frac{|-3|}{3\sqrt{6}} = \frac{1}{\sqrt{6}}cosΞΈ=36β€‹βˆ£βˆ’3βˆ£β€‹=6​1​

βœ… Angle β‰ˆ 65.9Β°


πŸ”Ή Relation to Line of Intersection

The line of intersection of two planes lies within both planes and makes an angle equal to ΞΈ with either plane’s normal.

Planes meet along a line whose direction vector = n1Γ—n2\mathbf{n_1} \times \mathbf{n_2}n1​×n2​.


🎯 3️⃣ Angle Between a Line and a Plane

Let a line have direction vector a=(l,m,n)\mathbf{a} = (l, m, n)a=(l,m,n),
and a plane have normal vector n=(a,b,c)\mathbf{n} = (a, b, c)n=(a,b,c).


πŸ”Ή Formula

sin⁑θ=∣aβ‹…n∣∣a∣∣n∣\boxed{\sin\theta = \frac{|\mathbf{a}\cdot\mathbf{n}|}{|\mathbf{a}||\mathbf{n}|}}sinΞΈ=∣a∣∣n∣∣aβ‹…nβˆ£β€‹β€‹

where ΞΈ = angle between the line and the plane.

βœ… (The angle between line and normal = 90Β° βˆ’ ΞΈ, hence sine instead of cosine.)


πŸ”Ή Example 3 β€” Line and Plane

Find the angle between the line xβˆ’22=y+13=zβˆ’46\frac{x – 2}{2} = \frac{y + 1}{3} = \frac{z – 4}{6}2xβˆ’2​=3y+1​=6zβˆ’4​

and the plane 2xβˆ’y+2z+3=02x – y + 2z + 3 = 02xβˆ’y+2z+3=0 a=(2,3,6),n=(2,βˆ’1,2)\mathbf{a} = (2, 3, 6), \quad \mathbf{n} = (2, -1, 2)a=(2,3,6),n=(2,βˆ’1,2) aβ‹…n=2(2)+3(βˆ’1)+6(2)=13\mathbf{a}\cdot\mathbf{n} = 2(2) + 3(-1) + 6(2) = 13aβ‹…n=2(2)+3(βˆ’1)+6(2)=13 ∣a∣=7,∣n∣=3|\mathbf{a}| = 7, \quad |\mathbf{n}| = 3∣a∣=7,∣n∣=3 sin⁑θ=1321\sin\theta = \frac{13}{21}sinΞΈ=2113​

βœ… Angle = ΞΈ = sin⁻¹(13/21) β‰ˆ 38.4Β°


πŸ”Ή Special Cases

ConditionRelationship
aβ‹…n=0\mathbf{a}\cdot\mathbf{n} = 0aβ‹…n=0Line lies in plane
aβˆ₯n\mathbf{a} \parallel \mathbf{n}aβˆ₯nLine perpendicular to plane

🧩 4️⃣ Summary Table

RelationshipFormulaTypeRange
Between two lines( \cos\theta = \frac{\mathbf{a_1}\cdot\mathbf{a_2}}{\mathbf{a_1}
Between two planes( \cos\theta = \frac{\mathbf{n_1}\cdot\mathbf{n_2}}{\mathbf{n_1}
Between line & plane( \sin\theta = \frac{\mathbf{a}\cdot\mathbf{n}}{

πŸ”Ή Common Mistakes

  1. ❌ Mixing up sine vs cosine in line–plane formula.
  2. ❌ Using wrong vectors (direction vs normal).
  3. ❌ Forgetting absolute value for angle magnitude.
  4. ❌ Calculating obtuse instead of acute angle.

🌟 Why It Matters

Understanding angles in 3D is fundamental for:

  • Geometry of space & mechanics,
  • Computer graphics & modeling,
  • IB/A Level/STEP problems on direction and orientation,
  • Analytic geometry derivations.

Algebraic dot products reveal spatial relationships geometrically.


πŸ“˜ Learn Beyond Formula

At Math By Rishabh, every formula is visualized, derived, and understood intuitively.

In the Mathematics Elevate Mentorship Program, you’ll:
βœ… Visualize 3D angles with vector logic,
βœ… Derive geometric results algebraically,
βœ… Master IB HL & A Level P4 problems conceptually.

πŸš€ See space through structure.
πŸ‘‰ Book your personalized mentorship session now at MathByRishabh.com

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top