📏 Distance from a Point to a Line and a Plane — 3D Geometry Simplified

Author: Rishabh Kumar (IIT + ISI | Global Math Mentor)**
Published: October 2025
Category: 3D Geometry | Vectors & Distances


🔹 Introduction

In 3D geometry, measuring distances isn’t as straightforward as in 2D.

We often need to find:
1️⃣ The shortest distance from a point to a line, or
2️⃣ The perpendicular distance from a point to a plane.

Both are perpendicular measurements — the shortest possible path from the point to the geometric object.

In essence, we’re finding how far a point lies “off” the line or plane.


🧭 1️⃣ Distance from a Point to a Line

Given:

A line passing through point A(x1,y1,z1)A(x_1, y_1, z_1)A(x1​,y1​,z1​)
with direction ratios (l,m,n)(l, m, n)(l,m,n).

Equation of line (vector form): r=a+λb\mathbf{r} = \mathbf{a} + \lambda\mathbf{b}r=a+λb

where a=(x1,y1,z1)\mathbf{a} = (x_1, y_1, z_1)a=(x1​,y1​,z1​), and b=(l,m,n)\mathbf{b} = (l, m, n)b=(l,m,n).

A point P(x2,y2,z2)P(x_2, y_2, z_2)P(x2​,y2​,z2​) in space.


Formula

The shortest distance (D) from point PPP to the line is: D=∣ (b)×(AP) ∣∣b∣\boxed{D = \frac{|\ (\mathbf{b}) \times (\mathbf{AP})\ |}{|\mathbf{b}|}}D=∣b∣∣ (b)×(AP) ∣​​

Or equivalently (in coordinate form): D=∣(rP−rA)×b∣∣b∣D = \frac{|(\mathbf{r_P – r_A}) \times \mathbf{b}|}{|\mathbf{b}|}D=∣b∣∣(rP​−rA​)×b∣​


🔹 Derivation (Conceptual View)

Let AP=rP−rA\mathbf{AP} = \mathbf{r_P} – \mathbf{r_A}AP=rP​−rA​.
We can split AP\mathbf{AP}AP into two components:

  • One along the line (parallel to b\mathbf{b}b),
  • One perpendicular to the line (the distance we seek).

That perpendicular component has magnitude: ∣AP∣sin⁡θ=∣AP×b∣∣b∣|\mathbf{AP}| \sin\theta = \frac{|\mathbf{AP} \times \mathbf{b}|}{|\mathbf{b}|}∣AP∣sinθ=∣b∣∣AP×b∣​

✅ Hence: D=∣AP×b∣∣b∣\boxed{D = \frac{|\mathbf{AP} \times \mathbf{b}|}{|\mathbf{b}|}}D=∣b∣∣AP×b∣​​


🔹 Example 1 — Point to Line

Find the perpendicular distance from P(1,2,3)P(1, 2, 3)P(1,2,3) to the line x−23=y+1−2=z−36\frac{x – 2}{3} = \frac{y + 1}{-2} = \frac{z – 3}{6}3x−2​=−2y+1​=6z−3​


Step 1️⃣: Identify knowns a=(2,−1,3),b=(3,−2,6)\mathbf{a} = (2, -1, 3), \quad \mathbf{b} = (3, -2, 6)a=(2,−1,3),b=(3,−2,6) rP=(1,2,3)\mathbf{r_P} = (1, 2, 3)rP​=(1,2,3)


Step 2️⃣: Find AP=rP−a=(−1,3,0)\mathbf{AP} = \mathbf{r_P} – \mathbf{a} = (-1, 3, 0)AP=rP​−a=(−1,3,0)


Step 3️⃣: Cross product AP×b=∣ijk−1303−26∣=(18)i+(6)j+(−7)k\mathbf{AP} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -1 & 3 & 0 \\ 3 & -2 & 6 \end{vmatrix} = (18)\mathbf{i} + (6)\mathbf{j} + (-7)\mathbf{k}AP×b=​i−13​j3−2​k06​​=(18)i+(6)j+(−7)k ∣AP×b∣=182+62+(−7)2=409|\mathbf{AP} \times \mathbf{b}| = \sqrt{18^2 + 6^2 + (-7)^2} = \sqrt{409}∣AP×b∣=182+62+(−7)2​=409​ ∣b∣=32+(−2)2+62=7|\mathbf{b}| = \sqrt{3^2 + (-2)^2 + 6^2} = 7∣b∣=32+(−2)2+62​=7


Distance: D=4097≈2.89D = \frac{\sqrt{409}}{7} \approx 2.89D=7409​​≈2.89


🧮 2️⃣ Distance from a Point to a Plane

Given:

Equation of plane: ax+by+cz+d=0ax + by + cz + d = 0ax+by+cz+d=0

Point P(x1,y1,z1)P(x_1, y_1, z_1)P(x1​,y1​,z1​).


Formula

D=∣ax1+by1+cz1+d∣a2+b2+c2\boxed{D = \frac{|a x_1 + b y_1 + c z_1 + d|}{\sqrt{a^2 + b^2 + c^2}}}D=a2+b2+c2​∣ax1​+by1​+cz1​+d∣​​


🔹 Derivation (Vector Approach)

Let the plane have normal vector n=(a,b,c)\mathbf{n} = (a, b, c)n=(a,b,c),
and let r0\mathbf{r_0}r0​ be a point on the plane.

The shortest distance from PPP to plane = component of rP−r0\mathbf{r_P – r_0}rP​−r0​ along n\mathbf{n}n: D=∣(rP−r0)⋅n∣∣n∣D = \frac{|(\mathbf{r_P – r_0})\cdot \mathbf{n}|}{|\mathbf{n}|}D=∣n∣∣(rP​−r0​)⋅n∣​

Using plane equation ax0+by0+cz0+d=0a x_0 + b y_0 + c z_0 + d = 0ax0​+by0​+cz0​+d=0,
we simplify to: D=∣ax1+by1+cz1+d∣a2+b2+c2\boxed{D = \frac{|a x_1 + b y_1 + c z_1 + d|}{\sqrt{a^2 + b^2 + c^2}}}D=a2+b2+c2​∣ax1​+by1​+cz1​+d∣​​


🔹 Example 2 — Point to Plane

Find the perpendicular distance from P(3,−2,1)P(3, -2, 1)P(3,−2,1) to the plane 2x−3y+6z−4=02x – 3y + 6z – 4 = 02x−3y+6z−4=0 a=2, b=−3, c=6, d=−4a = 2, \ b = -3, \ c = 6, \ d = -4a=2, b=−3, c=6, d=−4 D=∣2(3)−3(−2)+6(1)−4∣22+(−3)2+62=∣6+6+6−4∣49=147=2D = \frac{|2(3) – 3(-2) + 6(1) – 4|}{\sqrt{2^2 + (-3)^2 + 6^2}} = \frac{|6 + 6 + 6 – 4|}{\sqrt{49}} = \frac{14}{7} = 2D=22+(−3)2+62​∣2(3)−3(−2)+6(1)−4∣​=49​∣6+6+6−4∣​=714​=2

Distance = 2 units


🔹 Example 3 — Special Case

For plane x+y+z=6x + y + z = 6x+y+z=6 and point P(1,1,1)P(1, 1, 1)P(1,1,1): D=∣1+1+1−6∣12+12+12=43=433D = \frac{|1 + 1 + 1 – 6|}{\sqrt{1^2 + 1^2 + 1^2}} = \frac{4}{\sqrt{3}} = \frac{4\sqrt{3}}{3}D=12+12+12​∣1+1+1−6∣​=3​4​=343​​

Distance = 433\frac{4\sqrt{3}}{3}343​​


🧩 3️⃣ Summary of Distance Formulas

TypeFormulaVector FormKey Idea
Point → Line( D = \frac{(\mathbf{b}) \times (\mathbf{AP})}{
Point → Plane( D = \frac{ax_1 + by_1 + cz_1 + d}{\sqrt{a^2 + b^2 + c^2}} )

🔹 Common Mistakes

  1. ❌ Forgetting the absolute value — distance is always positive.
  2. ❌ Using wrong direction vector (for line) or coefficients (for plane).
  3. ❌ Confusing between line’s direction and normal vectors.
  4. ❌ Substituting point incorrectly in the plane equation (sign errors).

🌟 Why It Matters

These formulas are central to:

  • Shortest distances in geometry,
  • Line-plane intersection and angles,
  • Optimization (e.g., minimal path problems),
  • Physics & Engineering (motion along or perpendicular to a field).

The beauty of 3D geometry is that algebra expresses space precisely.


📘 Learn Beyond the Formula

At Math By Rishabh, geometry isn’t memorized — it’s visualized.

In the Mathematics Elevate Mentorship Program, you’ll:
✅ Derive geometric results using vectors,
✅ Visualize perpendicular distances and projections,
✅ Master IB, A Level, and STEP geometry systematically.

🚀 Turn geometry into intuition.
👉 Book your personalized mentorship session now at MathByRishabh.com

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top