๐Ÿงฎ Binomial Theorem for Fractions & Negative Integers โ€” Beyond the Basics

Author: Rishabh Kumar (IIT + ISI | Global Math Mentor)**
Published: October 2025
Category: Algebra | Binomial Expansion | Advanced Topics


๐Ÿ”น Introduction

The Binomial Theorem is one of the most powerful results in algebra โ€” it expands expressions of the form (1+x)n(1 + x)^n(1+x)n for any exponent nnn.

Most students learn it for positive integers like n=3n = 3n=3 or 555, but what happens when nnn is a fraction or a negative number?

Thatโ€™s where the general form of the binomial theorem comes in โ€” a key concept for advanced mathematics and series expansions.


โšก๏ธ 1๏ธโƒฃ The Standard Binomial Theorem

For any positive integer nnn: (1+x)n=1+(n1)x+(n2)x2+โ‹ฏ+(nn)xn(1 + x)^n = 1 + \binom{n}{1}x + \binom{n}{2}x^2 + \cdots + \binom{n}{n}x^n(1+x)n=1+(1nโ€‹)x+(2nโ€‹)x2+โ‹ฏ+(nnโ€‹)xn

Where the binomial coefficient is: (nr)=n!r!(nโˆ’r)!\binom{n}{r} = \frac{n!}{r!(n – r)!}(rnโ€‹)=r!(nโˆ’r)!n!โ€‹

This expansion has finite terms because nnn is an integer.

Example: (1+x)3=1+3x+3×2+x3(1 + x)^3 = 1 + 3x + 3x^2 + x^3(1+x)3=1+3x+3×2+x3


๐ŸŒŸ 2๏ธโƒฃ Extending to Fractional or Negative Powers

When nnn is not a positive integer โ€” say a fraction or negative integer โ€” the series becomes infinite.

The formula still holds if we redefine (nr)\binom{n}{r}(rnโ€‹) for all real (or even complex) values of nnn: (nr)=n(nโˆ’1)(nโˆ’2)โ‹ฏ(nโˆ’r+1)r!\boxed{\displaystyle \binom{n}{r} = \frac{n(n – 1)(n – 2)\cdots(n – r + 1)}{r!}}(rnโ€‹)=r!n(nโˆ’1)(nโˆ’2)โ‹ฏ(nโˆ’r+1)โ€‹โ€‹

This definition works for any real or fractional nnn, even if n<0n < 0n<0.


๐Ÿงฉ 3๏ธโƒฃ Generalized Binomial Theorem

For any real number nnn and โˆฃxโˆฃ<1|x| < 1โˆฃxโˆฃ<1: (1+x)n=1+nx+n(nโˆ’1)2!x2+n(nโˆ’1)(nโˆ’2)3!x3+โ‹ฏ(1 + x)^n = 1 + nx + \frac{n(n – 1)}{2!}x^2 + \frac{n(n – 1)(n – 2)}{3!}x^3 + \cdots(1+x)n=1+nx+2!n(nโˆ’1)โ€‹x2+3!n(nโˆ’1)(nโˆ’2)โ€‹x3+โ‹ฏ

This is an infinite series (convergent for โˆฃxโˆฃ<1|x| < 1โˆฃxโˆฃ<1).


๐Ÿ”น Example 1 โ€” Fractional Power

Expand (1+x)1/2(1 + x)^{1/2}(1+x)1/2 up to four terms. (1+x)1/2=1+12x+(1/2)(โˆ’1/2)2!x2+(1/2)(โˆ’1/2)(โˆ’3/2)3!x3+โ‹ฏ(1 + x)^{1/2} = 1 + \frac{1}{2}x + \frac{(1/2)(-1/2)}{2!}x^2 + \frac{(1/2)(-1/2)(-3/2)}{3!}x^3 + \cdots(1+x)1/2=1+21โ€‹x+2!(1/2)(โˆ’1/2)โ€‹x2+3!(1/2)(โˆ’1/2)(โˆ’3/2)โ€‹x3+โ‹ฏ

Simplify: (1+x)1/2=1+x2โˆ’x28+x316โˆ’โ‹ฏ(1 + x)^{1/2} = 1 + \frac{x}{2} – \frac{x^2}{8} + \frac{x^3}{16} – \cdots(1+x)1/2=1+2xโ€‹โˆ’8×2โ€‹+16×3โ€‹โˆ’โ‹ฏ

โœ… This gives the power series for 1+x\sqrt{1 + x}1+xโ€‹.


๐Ÿ”น Example 2 โ€” Negative Power

Expand (1+x)โˆ’1(1 + x)^{-1}(1+x)โˆ’1. (1+x)โˆ’1=1+(โˆ’1)x+(โˆ’1)(โˆ’2)x22!+(โˆ’1)(โˆ’2)(โˆ’3)x33!+โ‹ฏ(1 + x)^{-1} = 1 + (-1)x + (-1)(-2)\frac{x^2}{2!} + (-1)(-2)(-3)\frac{x^3}{3!} + \cdots(1+x)โˆ’1=1+(โˆ’1)x+(โˆ’1)(โˆ’2)2!x2โ€‹+(โˆ’1)(โˆ’2)(โˆ’3)3!x3โ€‹+โ‹ฏ

Simplify: (1+x)โˆ’1=1โˆ’x+x2โˆ’x3+x4โˆ’โ‹ฏ(1 + x)^{-1} = 1 – x + x^2 – x^3 + x^4 – \cdots(1+x)โˆ’1=1โˆ’x+x2โˆ’x3+x4โˆ’โ‹ฏ

โœ… This is the geometric series with ratio โˆ’x-xโˆ’x.


๐Ÿ”น Example 3 โ€” Negative Fractional Power

Expand (1+x)โˆ’1/2(1 + x)^{-1/2}(1+x)โˆ’1/2 up to 4 terms. (1+x)โˆ’1/2=1+(โˆ’12)x+(โˆ’12)(โˆ’32)2!x2โˆ’(โˆ’12)(โˆ’32)(โˆ’52)3!x3+โ‹ฏ(1 + x)^{-1/2} = 1 + \left(-\frac{1}{2}\right)x + \frac{(-\frac{1}{2})(-\frac{3}{2})}{2!}x^2 – \frac{(-\frac{1}{2})(-\frac{3}{2})(-\frac{5}{2})}{3!}x^3 + \cdots(1+x)โˆ’1/2=1+(โˆ’21โ€‹)x+2!(โˆ’21โ€‹)(โˆ’23โ€‹)โ€‹x2โˆ’3!(โˆ’21โ€‹)(โˆ’23โ€‹)(โˆ’25โ€‹)โ€‹x3+โ‹ฏ

Simplify: (1+x)โˆ’1/2=1โˆ’x2+3×28โˆ’5×316+โ‹ฏ(1 + x)^{-1/2} = 1 – \frac{x}{2} + \frac{3x^2}{8} – \frac{5x^3}{16} + \cdots(1+x)โˆ’1/2=1โˆ’2xโ€‹+83×2โ€‹โˆ’165×3โ€‹+โ‹ฏ

โœ… This series represents 11+x\frac{1}{\sqrt{1 + x}}1+xโ€‹1โ€‹.


๐Ÿ’ก 4๏ธโƒฃ Important Observations

CaseExpansion TypeNumber of TermsConvergence
nโˆˆNn \in \mathbb{N}nโˆˆNStandard BinomialFiniteAlways
nโˆˆZโˆ’n \in \mathbb{Z}^-nโˆˆZโˆ’Negative IntegerInfinite(
nโˆˆQn \in \mathbb{Q}nโˆˆQFractionalInfinite(

๐Ÿ”น Why โˆฃxโˆฃ<1|x| < 1โˆฃxโˆฃ<1?

Because as rโ†’โˆžr \to \inftyrโ†’โˆž, the terms xrx^rxr get smaller only if โˆฃxโˆฃ<1|x| < 1โˆฃxโˆฃ<1.
If โˆฃxโˆฃโ‰ฅ1|x| โ‰ฅ 1โˆฃxโˆฃโ‰ฅ1, the infinite series diverges.


๐Ÿ”น Shortcut Expansions to Remember

| Function | Expansion (|x| < 1) |
|———–|————-|
| (1+x)โˆ’1(1 + x)^{-1}(1+x)โˆ’1 | 1โˆ’x+x2โˆ’x3+โ‹ฏ1 – x + x^2 – x^3 + \cdots1โˆ’x+x2โˆ’x3+โ‹ฏ |
| (1+x)โˆ’2(1 + x)^{-2}(1+x)โˆ’2 | 1โˆ’2x+3×2โˆ’4×3+โ‹ฏ1 – 2x + 3x^2 – 4x^3 + \cdots1โˆ’2x+3×2โˆ’4×3+โ‹ฏ |
| (1+x)1/2(1 + x)^{1/2}(1+x)1/2 | 1+x2โˆ’x28+x316โˆ’โ‹ฏ1 + \frac{x}{2} – \frac{x^2}{8} + \frac{x^3}{16} – \cdots1+2xโ€‹โˆ’8×2โ€‹+16×3โ€‹โˆ’โ‹ฏ |
| (1+x)โˆ’1/2(1 + x)^{-1/2}(1+x)โˆ’1/2 | 1โˆ’x2+3×28โˆ’5×316+โ‹ฏ1 – \frac{x}{2} + \frac{3x^2}{8} – \frac{5x^3}{16} + \cdots1โˆ’2xโ€‹+83×2โ€‹โˆ’165×3โ€‹+โ‹ฏ |

These appear frequently in IB, A Level, and STEP questions.


๐Ÿ”น Quick IB-Style Application

Find the first three terms of 14โˆ’x\frac{1}{\sqrt{4 – x}}4โˆ’xโ€‹1โ€‹.

Rewrite: 14โˆ’x=12(1โˆ’x4)โˆ’1/2\frac{1}{\sqrt{4 – x}} = \frac{1}{2}\left(1 – \frac{x}{4}\right)^{-1/2}4โˆ’xโ€‹1โ€‹=21โ€‹(1โˆ’4xโ€‹)โˆ’1/2

Let u=โˆ’x4u = -\frac{x}{4}u=โˆ’4xโ€‹.
Then: (1+u)โˆ’1/2=1โˆ’12u+38u2+โ‹ฏ(1 + u)^{-1/2} = 1 – \frac{1}{2}u + \frac{3}{8}u^2 + \cdots(1+u)โˆ’1/2=1โˆ’21โ€‹u+83โ€‹u2+โ‹ฏ 14โˆ’x=12(1+x8+3×2128+โ‹ฏโ€‰)\frac{1}{\sqrt{4 – x}} = \frac{1}{2}\left(1 + \frac{x}{8} + \frac{3x^2}{128} + \cdots\right)4โˆ’xโ€‹1โ€‹=21โ€‹(1+8xโ€‹+1283×2โ€‹+โ‹ฏ)

โœ… Result: 12+x16+3×2256+โ‹ฏ\frac{1}{2} + \frac{x}{16} + \frac{3x^2}{256} + \cdots21โ€‹+16xโ€‹+2563×2โ€‹+โ‹ฏ


๐Ÿš€ 5๏ธโƒฃ Why This Generalization Matters

This extension allows us to:

  • Expand non-integer powers in physics & calculus,
  • Derive Taylor series easily,
  • Handle rational exponents in approximations,
  • Model real-world nonlinear phenomena mathematically.

๐ŸŒŸ Summary Table

Type of PowerExampleExpansion TypeNature
Positive Integer(1+x)3(1 + x)^3(1+x)3FiniteAlgebraic
Negative Integer(1+x)โˆ’2(1 + x)^{-2}(1+x)โˆ’2InfiniteConvergent for
Fractional(1+x)1/2(1 + x)^{1/2}(1+x)1/2InfiniteConvergent for

๐Ÿ“˜ Learn Beyond Formula

At Math By Rishabh, we donโ€™t just teach expansions โ€” we teach why they work.

In the Mathematics Elevate Mentorship Program, youโ€™ll:
โœ… Derive generalized binomial expansions from first principles,
โœ… Apply them to STEP/MAT-level problems,
โœ… Connect algebraic series to calculus and approximation.

๐Ÿš€ Learn to expand beyond limits โ€” literally.
๐Ÿ‘‰ Book your personalized mentorship session now at MathByRishabh.com

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top