Author: Rishabh Kumar (IIT + ISI | Global Math Mentor)
Published: October 2025
Category: Calculus | Applications of Integration
🔹 What Is Definite Integration?
Definite integration calculates the exact numerical value of an integral between two limits — representing the total accumulation or net area under a curve between two points.
If f(x)f(x)f(x) is a continuous function on [a,b][a, b][a,b], then: ∫abf(x) dx\int_a^b f(x)\,dx∫abf(x)dx
gives the net area between the curve y=f(x)y = f(x)y=f(x) and the x-axis, from x=ax = ax=a to x=bx = bx=b.
Indefinite integration gives a family of functions.
Definite integration gives a definite number.
🔹 The Fundamental Theorem of Calculus
The foundation of definite integration connects differentiation and integration beautifully: ∫abf(x) dx=F(b)−F(a)\int_a^b f(x)\,dx = F(b) – F(a)∫abf(x)dx=F(b)−F(a)
where F(x)F(x)F(x) is the antiderivative of f(x)f(x)f(x).
In simple words:
Differentiate to get f(x)f(x)f(x); integrate f(x)f(x)f(x) to get back to F(x)F(x)F(x).
🔹 Step-by-Step Example 1 — Simple Polynomial
∫03(x2+2x) dx\int_0^3 (x^2 + 2x)\,dx∫03(x2+2x)dx
Integrate: F(x)=x33+x2F(x) = \frac{x^3}{3} + x^2F(x)=3×3+x2
Apply limits: [x33+x2]03=(273+9)−0=18\left[\frac{x^3}{3} + x^2\right]_0^3 = \left(\frac{27}{3} + 9\right) – 0 = 18[3×3+x2]03=(327+9)−0=18
✅ Result: 181818
🔹 Step-by-Step Example 2 — Area Under a Trig Curve
∫0π/2sinx dx\int_0^{\pi/2} \sin x\,dx∫0π/2sinxdx F(x)=−cosxF(x) = -\cos xF(x)=−cosx [−cosx]0π/2=(−cos(π/2))−(−cos0)=0+1=1[-\cos x]_0^{\pi/2} = (-\cos(\pi/2)) – (-\cos 0) = 0 + 1 = 1[−cosx]0π/2=(−cos(π/2))−(−cos0)=0+1=1
✅ Area = 1 square unit
🔹 Step-by-Step Example 3 — Function Below the Axis
∫0πsinx dx\int_0^{\pi} \sin x\,dx∫0πsinxdx [−cosx]0π=(−cosπ)−(−cos0)=(1)−(−1)=2[-\cos x]_0^{\pi} = (-\cos \pi) – (-\cos 0) = (1) – (-1) = 2[−cosx]0π=(−cosπ)−(−cos0)=(1)−(−1)=2
✅ The net area = 222.
But note — if f(x)f(x)f(x) dips below the x-axis, the area is negative.
For total (absolute) area, take ∣f(x)∣|f(x)|∣f(x)∣ or split the integral where the sign changes.
🔹 Properties of Definite Integrals
- Reversal of limits: ∫abf(x) dx=−∫baf(x) dx\int_a^b f(x)\,dx = -\int_b^a f(x)\,dx∫abf(x)dx=−∫baf(x)dx
- Zero-width interval: ∫aaf(x) dx=0\int_a^a f(x)\,dx = 0∫aaf(x)dx=0
- Additivity over intervals: ∫abf(x) dx+∫bcf(x) dx=∫acf(x) dx\int_a^b f(x)\,dx + \int_b^c f(x)\,dx = \int_a^c f(x)\,dx∫abf(x)dx+∫bcf(x)dx=∫acf(x)dx
- Symmetry (Even & Odd functions):
- If f(x)f(x)f(x) is even, ∫−aaf(x) dx=2∫0af(x) dx\int_{-a}^a f(x)\,dx = 2\int_0^a f(x)\,dx∫−aaf(x)dx=2∫0af(x)dx
- If f(x)f(x)f(x) is odd, ∫−aaf(x) dx=0\int_{-a}^a f(x)\,dx = 0∫−aaf(x)dx=0
🔹 Example 4 — Symmetry in Action
∫−22×3 dx\int_{-2}^2 x^3\,dx∫−22x3dx
Since x3x^3×3 is odd, the integral = 0. ∫−22(x2) dx=2∫02×2 dx=2[x33]02=163\int_{-2}^2 (x^2)\,dx = 2\int_0^2 x^2\,dx = 2\left[\frac{x^3}{3}\right]_0^2 = \frac{16}{3}∫−22(x2)dx=2∫02x2dx=2[3×3]02=316
✅ Result: 163\frac{16}{3}316
🔹 Example 5 — Using Substitution in Definite Integration
∫0π/2sin(2x) dx\int_0^{\pi/2} \sin(2x)\,dx∫0π/2sin(2x)dx
Let ( u = 2x \Rightarrow du = 2dx \Rightarrow dx = \frac{du}{2}
]
Change limits:
- When x=0, u=0x = 0, \ u = 0x=0, u=0
- When x=π/2, u=πx = \pi/2, \ u = \pix=π/2, u=π
∫0π/2sin(2x) dx=12∫0πsinu du=12[−cosu]0π=12(2)=1\int_0^{\pi/2} \sin(2x)\,dx = \frac{1}{2}\int_0^{\pi} \sin u\,du = \frac{1}{2}[-\cos u]_0^{\pi} = \frac{1}{2}(2) = 1∫0π/2sin(2x)dx=21∫0πsinudu=21[−cosu]0π=21(2)=1
✅ Result: 111
🔹 Geometrical Meaning
The definite integral represents:
- The signed area under the curve y=f(x)y = f(x)y=f(x)
- The accumulated quantity (distance, work, probability, etc.)
- The net change of a function over an interval
🔹 Common Mistakes
- ❌ Forgetting to apply limits after integration.
- ❌ Reversing the limits — changes the sign!
- ❌ Confusing total area vs net area.
- ❌ Forgetting to change limits when substituting variables.
🔹 Advanced Example — Exponential Function
∫01e2x dx=12e2x∣01=12(e2−1)\int_0^1 e^{2x}\,dx = \frac{1}{2}e^{2x}\Big|_0^1 = \frac{1}{2}(e^2 – 1)∫01e2xdx=21e2x01=21(e2−1)
✅ Exact area = 12(e2−1)\frac{1}{2}(e^2 – 1)21(e2−1)
🌟 Why Definite Integration Matters
Definite integration is where calculus becomes geometry — linking algebraic processes with physical meaning.
It’s the key to:
- Computing areas, volumes, and work,
- Understanding probability density,
- And building problem-solving intuition for IB, AP, and STEP exams.
📘 Learn Beyond Computation
At Math By Rishabh, we emphasize why integration works — not just how.
In the Mathematics Elevate Mentorship Program, you’ll:
✅ Connect definite integrals with geometric intuition,
✅ Master calculus proofs and techniques,
✅ Prepare effectively for IB, AP, A Level, and university exams.
🚀 Turn integration into intuition.
👉 Book your personalized mentorship session now at MathByRishabh.com


