🔷 Integration by Substitution — The Chain Rule in Reverse

Author: Rishabh Kumar (IIT + ISI | Global Math Mentor)
Published: October 2025
Category: Calculus | Integration Techniques


🔹 What Is Integration by Substitution?

Integration by Substitution is the reverse process of the chain rule in differentiation.

It’s used when the integral contains a composite function — something inside something else — and a direct integration approach doesn’t work cleanly.

The idea is simple:

Change the variable to make the integral simpler.


🔹 The Formula

If u=g(x)u = g(x)u=g(x), then dudx=g′(x)⇒du=g′(x) dx\frac{du}{dx} = g'(x) \quad \Rightarrow \quad du = g'(x)\,dxdxdu​=g′(x)⇒du=g′(x)dx

Substituting into the integral: ∫f(g(x))g′(x) dx=∫f(u) du\int f(g(x))g'(x)\,dx = \int f(u)\,du∫f(g(x))g′(x)dx=∫f(u)du

Then integrate with respect to uuu, and finally substitute back u=g(x)u = g(x)u=g(x).


🔹 Step-by-Step Example 1 — Basic Substitution

∫2xcos⁡(x2) dx\int 2x \cos(x^2)\,dx∫2xcos(x2)dx

Let ( u = x^2 \Rightarrow du = 2x,dx
]

So: ∫2xcos⁡(x2) dx=∫cos⁡(u) du=sin⁡(u)+C=sin⁡(x2)+C\int 2x \cos(x^2)\,dx = \int \cos(u)\,du = \sin(u) + C = \sin(x^2) + C∫2xcos(x2)dx=∫cos(u)du=sin(u)+C=sin(x2)+C

Result: sin⁡(x2)+C\sin(x^2) + Csin(x2)+C

This works because 2x2x2x was the derivative of x2x^2×2 — the inner function.


🔹 Example 2 — Using a Constant Multiplier

∫(3×2+2x)ex3+x2 dx\int (3x^2 + 2x) e^{x^3 + x^2}\,dx∫(3×2+2x)ex3+x2dx

Let ( u = x^3 + x^2 \Rightarrow du = (3x^2 + 2x),dx
] ∫(3×2+2x)ex3+x2 dx=∫eu du=eu+C=ex3+x2+C\int (3x^2 + 2x) e^{x^3 + x^2}\,dx = \int e^u\,du = e^u + C = e^{x^3 + x^2} + C∫(3×2+2x)ex3+x2dx=∫eudu=eu+C=ex3+x2+C

Result: ex3+x2+Ce^{x^3 + x^2} + Cex3+x2+C


🔹 Example 3 — Trigonometric Case

∫sin⁡(3x) dx\int \sin(3x)\,dx∫sin(3x)dx

Let ( u = 3x \Rightarrow du = 3,dx \Rightarrow dx = \frac{du}{3}
] ∫sin⁡(3x) dx=13∫sin⁡(u) du=−13cos⁡(u)+C=−13cos⁡(3x)+C\int \sin(3x)\,dx = \frac{1}{3}\int \sin(u)\,du = -\frac{1}{3}\cos(u) + C = -\frac{1}{3}\cos(3x) + C∫sin(3x)dx=31​∫sin(u)du=−31​cos(u)+C=−31​cos(3x)+C

Result: −13cos⁡(3x)+C-\frac{1}{3}\cos(3x) + C−31​cos(3x)+C


🔹 Example 4 — Substitution with Limits (Definite Integral)

∫0π/42sin⁡(2x) dx\int_0^{\pi/4} 2\sin(2x)\,dx∫0π/4​2sin(2x)dx

Let ( u = 2x \Rightarrow du = 2dx \Rightarrow dx = \frac{du}{2}
]

Change limits:

  • When x=0, u=0x = 0, \ u = 0x=0, u=0
  • When x=π/4, u=π/2x = \pi/4, \ u = \pi/2x=π/4, u=π/2

Now: ∫0π/42sin⁡(2x) dx=∫0π/2sin⁡(u) du=[−cos⁡(u)]0π/2=1\int_0^{\pi/4} 2\sin(2x)\,dx = \int_0^{\pi/2} \sin(u)\,du = [-\cos(u)]_0^{\pi/2} = 1∫0π/4​2sin(2x)dx=∫0π/2​sin(u)du=[−cos(u)]0π/2​=1

Result: 111


🔹 Common Pitfalls

  1. ❌ Forgetting to substitute back u=g(x)u = g(x)u=g(x) at the end (for indefinite integrals).
  2. ❌ Forgetting to change the limits for definite integrals.
  3. ❌ Choosing the wrong substitution (make sure it simplifies the integral).
  4. ❌ Losing constants during substitution (dx=du/kdx = du/kdx=du/k).

🔹 Advanced Example — Reciprocal Function

∫x(x2+1)2 dx\int \frac{x}{(x^2 + 1)^2}\,dx∫(x2+1)2x​dx

Let ( u = x^2 + 1 \Rightarrow du = 2x,dx \Rightarrow \frac{du}{2} = x,dx
] ∫x(x2+1)2 dx=12∫u−2 du=12(u−1−1)+C=−12u+C\int \frac{x}{(x^2 + 1)^2}\,dx = \frac{1}{2}\int u^{-2}\,du = \frac{1}{2}\left(\frac{u^{-1}}{-1}\right) + C = -\frac{1}{2u} + C∫(x2+1)2x​dx=21​∫u−2du=21​(−1u−1​)+C=−2u1​+C

Substitute back: −12(x2+1)+C-\frac{1}{2(x^2 + 1)} + C−2(x2+1)1​+C

Result: −12(x2+1)+C-\frac{1}{2(x^2 + 1)} + C−2(x2+1)1​+C


🔹 Connection with the Chain Rule

If: ddx[f(g(x))]=f′(g(x))g′(x)\frac{d}{dx}[f(g(x))] = f'(g(x))g'(x)dxd​[f(g(x))]=f′(g(x))g′(x)

then ∫f′(g(x))g′(x) dx=f(g(x))+C\int f'(g(x))g'(x)\,dx = f(g(x)) + C∫f′(g(x))g′(x)dx=f(g(x))+C

Integration by substitution undoes the chain rule — reversing differentiation logic.


🔹 Real-World Applications

  • Physics: velocity/acceleration under variable substitution
  • Probability: transforming PDFs (change of variable)
  • Economics: marginal functions and elasticity
  • Advanced exams: IB HL, AP BC, A Level P3, STEP integrals

🌟 Why It Matters

Substitution transforms calculus from mechanical problem-solving into pattern recognition.
You start seeing structure — not just symbols.

It trains students to think like mathematicians: “What change of variable simplifies this?” — a mindset essential for higher-level exams and research.


📘 Learn Beyond the Formula

At Math By Rishabh, integration techniques are taught as reasoning strategies — not tricks.

In the Mathematics Elevate Mentorship Program, you’ll:
✅ Master substitution for all function types,
✅ Connect it with chain rule and geometry,
✅ Solve IB, AP, and STEP-level problems with confidence.

🚀 Transform how you approach integration.
👉 Book your personalized mentorship session now at MathByRishabh.com

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top